Detailed syntax breakdown of Definition df-frecs
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | | cF |
. . 3
class 𝐹 |
| 4 | 1, 2, 3 | cfrecs 8305 |
. 2
class
frecs(𝑅, 𝐴, 𝐹) |
| 5 | | vf |
. . . . . . . 8
setvar 𝑓 |
| 6 | 5 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 7 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 9 | 6, 8 | wfn 6556 |
. . . . . 6
wff 𝑓 Fn 𝑥 |
| 10 | 8, 1 | wss 3951 |
. . . . . . 7
wff 𝑥 ⊆ 𝐴 |
| 11 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 12 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 13 | 1, 2, 12 | cpred 6320 |
. . . . . . . . 9
class
Pred(𝑅, 𝐴, 𝑦) |
| 14 | 13, 8 | wss 3951 |
. . . . . . . 8
wff Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 |
| 15 | 14, 11, 8 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 |
| 16 | 10, 15 | wa 395 |
. . . . . 6
wff (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) |
| 17 | 12, 6 | cfv 6561 |
. . . . . . . 8
class (𝑓‘𝑦) |
| 18 | 6, 13 | cres 5687 |
. . . . . . . . 9
class (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) |
| 19 | 12, 18, 3 | co 7431 |
. . . . . . . 8
class (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 20 | 17, 19 | wceq 1540 |
. . . . . . 7
wff (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 21 | 20, 11, 8 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 22 | 9, 16, 21 | w3a 1087 |
. . . . 5
wff (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 23 | 22, 7 | wex 1779 |
. . . 4
wff
∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 24 | 23, 5 | cab 2714 |
. . 3
class {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 25 | 24 | cuni 4907 |
. 2
class ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 26 | 4, 25 | wceq 1540 |
1
wff frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |