MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3 Structured version   Visualization version   GIF version

Theorem dfrecs3 8386
Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (Proof revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
dfrecs3 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Proof of Theorem dfrecs3
StepHypRef Expression
1 df-recs 8385 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 df-wrecs 8311 . 2 wrecs( E , On, 𝐹) = frecs( E , On, (𝐹 ∘ 2nd ))
3 df-frecs 8280 . . 3 frecs( E , On, (𝐹 ∘ 2nd )) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))}
4 3anass 1094 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))))
5 vex 3463 . . . . . . . . . . . . 13 𝑥 ∈ V
65elon 6361 . . . . . . . . . . . 12 (𝑥 ∈ On ↔ Ord 𝑥)
7 ordsson 7777 . . . . . . . . . . . . . 14 (Ord 𝑥𝑥 ⊆ On)
8 ordtr 6366 . . . . . . . . . . . . . 14 (Ord 𝑥 → Tr 𝑥)
97, 8jca 511 . . . . . . . . . . . . 13 (Ord 𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥))
10 epweon 7769 . . . . . . . . . . . . . . . 16 E We On
11 wess 5640 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ On → ( E We On → E We 𝑥))
1210, 11mpi 20 . . . . . . . . . . . . . . 15 (𝑥 ⊆ On → E We 𝑥)
1312anim1ci 616 . . . . . . . . . . . . . 14 ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥))
14 df-ord 6355 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
1513, 14sylibr 234 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥)
169, 15impbii 209 . . . . . . . . . . . 12 (Ord 𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥))
17 dftr3 5235 . . . . . . . . . . . . . 14 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
18 ssel2 3953 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
19 predon 7780 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → Pred( E , On, 𝑦) = 𝑦)
2019sseq1d 3990 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2118, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2221ralbidva 3161 . . . . . . . . . . . . . 14 (𝑥 ⊆ On → (∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥))
2317, 22bitr4id 290 . . . . . . . . . . . . 13 (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2423pm5.32i 574 . . . . . . . . . . . 12 ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
256, 16, 243bitri 297 . . . . . . . . . . 11 (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2625anbi1i 624 . . . . . . . . . 10 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))))
27 onelon 6377 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
2827, 19syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Pred( E , On, 𝑦) = 𝑦)
2928reseq2d 5966 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓𝑦))
3029oveq2d 7421 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)))
31 id 22 . . . . . . . . . . . . . . . 16 (𝑦𝑥𝑦𝑥)
32 vex 3463 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
3332resex 6016 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) ∈ V
3433a1i 11 . . . . . . . . . . . . . . . 16 (𝑦𝑥 → (𝑓𝑦) ∈ V)
3531, 34opco2 8123 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)) = (𝐹‘(𝑓𝑦)))
3635adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)) = (𝐹‘(𝑓𝑦)))
3730, 36eqtrd 2770 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓𝑦)))
3837eqeq2d 2746 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3938ralbidva 3161 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4039pm5.32i 574 . . . . . . . . . 10 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4126, 40bitr3i 277 . . . . . . . . 9 (((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4241anbi2i 623 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
43 an12 645 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
444, 42, 433bitri 297 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
4544exbii 1848 . . . . . 6 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
46 df-rex 3061 . . . . . 6 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
4745, 46bitr4i 278 . . . . 5 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4847abbii 2802 . . . 4 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4948unieqi 4895 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
503, 49eqtri 2758 . 2 frecs( E , On, (𝐹 ∘ 2nd )) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
511, 2, 503eqtri 2762 1 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cuni 4883  Tr wtr 5229   E cep 5552   We wwe 5605  cres 5656  ccom 5658  Predcpred 6289  Ord word 6351  Oncon0 6352   Fn wfn 6526  cfv 6531  (class class class)co 7405  2nd c2nd 7987  frecscfrecs 8279  wrecscwrecs 8310  recscrecs 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385
This theorem is referenced by:  recsfval  8395  tfrlem9  8399  dfrdg2  35813  dfrecs2  35968
  Copyright terms: Public domain W3C validator