MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3 Structured version   Visualization version   GIF version

Theorem dfrecs3 8341
Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020.) (Proof revised by Scott Fenton, 18-Nov-2024.)
Assertion
Ref Expression
dfrecs3 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Distinct variable group:   𝑓,𝐹,𝑥,𝑦

Proof of Theorem dfrecs3
StepHypRef Expression
1 df-recs 8340 . 2 recs(𝐹) = wrecs( E , On, 𝐹)
2 df-wrecs 8291 . 2 wrecs( E , On, 𝐹) = frecs( E , On, (𝐹 ∘ 2nd ))
3 df-frecs 8260 . . 3 frecs( E , On, (𝐹 ∘ 2nd )) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))}
4 3anass 1094 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))))
5 vex 3451 . . . . . . . . . . . . 13 𝑥 ∈ V
65elon 6341 . . . . . . . . . . . 12 (𝑥 ∈ On ↔ Ord 𝑥)
7 ordsson 7759 . . . . . . . . . . . . . 14 (Ord 𝑥𝑥 ⊆ On)
8 ordtr 6346 . . . . . . . . . . . . . 14 (Ord 𝑥 → Tr 𝑥)
97, 8jca 511 . . . . . . . . . . . . 13 (Ord 𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥))
10 epweon 7751 . . . . . . . . . . . . . . . 16 E We On
11 wess 5624 . . . . . . . . . . . . . . . 16 (𝑥 ⊆ On → ( E We On → E We 𝑥))
1210, 11mpi 20 . . . . . . . . . . . . . . 15 (𝑥 ⊆ On → E We 𝑥)
1312anim1ci 616 . . . . . . . . . . . . . 14 ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥))
14 df-ord 6335 . . . . . . . . . . . . . 14 (Ord 𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥))
1513, 14sylibr 234 . . . . . . . . . . . . 13 ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥)
169, 15impbii 209 . . . . . . . . . . . 12 (Ord 𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥))
17 dftr3 5220 . . . . . . . . . . . . . 14 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
18 ssel2 3941 . . . . . . . . . . . . . . . 16 ((𝑥 ⊆ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
19 predon 7762 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ On → Pred( E , On, 𝑦) = 𝑦)
2019sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2118, 20syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ⊆ On ∧ 𝑦𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥𝑦𝑥))
2221ralbidva 3154 . . . . . . . . . . . . . 14 (𝑥 ⊆ On → (∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥))
2317, 22bitr4id 290 . . . . . . . . . . . . 13 (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2423pm5.32i 574 . . . . . . . . . . . 12 ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
256, 16, 243bitri 297 . . . . . . . . . . 11 (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥))
2625anbi1i 624 . . . . . . . . . 10 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))))
27 onelon 6357 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
2827, 19syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Pred( E , On, 𝑦) = 𝑦)
2928reseq2d 5950 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓𝑦))
3029oveq2d 7403 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)))
31 id 22 . . . . . . . . . . . . . . . 16 (𝑦𝑥𝑦𝑥)
32 vex 3451 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
3332resex 6000 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) ∈ V
3433a1i 11 . . . . . . . . . . . . . . . 16 (𝑦𝑥 → (𝑓𝑦) ∈ V)
3531, 34opco2 8103 . . . . . . . . . . . . . . 15 (𝑦𝑥 → (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)) = (𝐹‘(𝑓𝑦)))
3635adantl 481 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓𝑦)) = (𝐹‘(𝑓𝑦)))
3730, 36eqtrd 2764 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓𝑦)))
3837eqeq2d 2740 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
3938ralbidva 3154 . . . . . . . . . . 11 (𝑥 ∈ On → (∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4039pm5.32i 574 . . . . . . . . . 10 ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4126, 40bitr3i 277 . . . . . . . . 9 (((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4241anbi2i 623 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
43 an12 645 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
444, 42, 433bitri 297 . . . . . . 7 ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
4544exbii 1848 . . . . . 6 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
46 df-rex 3054 . . . . . 6 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))))
4745, 46bitr4i 278 . . . . 5 (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))))
4847abbii 2796 . . . 4 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
4948unieqi 4883 . . 3 {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
503, 49eqtri 2752 . 2 frecs( E , On, (𝐹 ∘ 2nd )) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
511, 2, 503eqtri 2756 1 recs(𝐹) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  wss 3914   cuni 4871  Tr wtr 5214   E cep 5537   We wwe 5590  cres 5640  ccom 5642  Predcpred 6273  Ord word 6331  Oncon0 6332   Fn wfn 6506  cfv 6511  (class class class)co 7387  2nd c2nd 7967  frecscfrecs 8259  wrecscwrecs 8290  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  recsfval  8349  tfrlem9  8353  dfrdg2  35783  dfrecs2  35938
  Copyright terms: Public domain W3C validator