Proof of Theorem dfrecs3
Step | Hyp | Ref
| Expression |
1 | | df-recs 8173 |
. 2
⊢
recs(𝐹) = wrecs( E ,
On, 𝐹) |
2 | | df-wrecs 8099 |
. 2
⊢ wrecs( E
, On, 𝐹) = frecs( E , On,
(𝐹 ∘ 2nd
)) |
3 | | df-frecs 8068 |
. . 3
⊢ frecs( E
, On, (𝐹 ∘
2nd )) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} |
4 | | 3anass 1093 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))))) |
5 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
6 | 5 | elon 6260 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
7 | | ordsson 7610 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑥 → 𝑥 ⊆ On) |
8 | | ordtr 6265 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑥 → Tr 𝑥) |
9 | 7, 8 | jca 511 |
. . . . . . . . . . . . 13
⊢ (Ord
𝑥 → (𝑥 ⊆ On ∧ Tr 𝑥)) |
10 | | epweon 7603 |
. . . . . . . . . . . . . . . 16
⊢ E We
On |
11 | | wess 5567 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ⊆ On → ( E We On
→ E We 𝑥)) |
12 | 10, 11 | mpi 20 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ⊆ On → E We 𝑥) |
13 | 12 | anim1ci 615 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) → (Tr 𝑥 ∧ E We 𝑥)) |
14 | | df-ord 6254 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑥 ↔ (Tr 𝑥 ∧ E We 𝑥)) |
15 | 13, 14 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) → Ord 𝑥) |
16 | 9, 15 | impbii 208 |
. . . . . . . . . . . 12
⊢ (Ord
𝑥 ↔ (𝑥 ⊆ On ∧ Tr 𝑥)) |
17 | | dftr3 5191 |
. . . . . . . . . . . . . 14
⊢ (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥) |
18 | | ssel2 3912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
19 | | predon 7612 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ On → Pred( E , On,
𝑦) = 𝑦) |
20 | 19 | sseq1d 3948 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ On → (Pred( E , On,
𝑦) ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
21 | 18, 20 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ⊆ On ∧ 𝑦 ∈ 𝑥) → (Pred( E , On, 𝑦) ⊆ 𝑥 ↔ 𝑦 ⊆ 𝑥)) |
22 | 21 | ralbidva 3119 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ⊆ On →
(∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 𝑦 ⊆ 𝑥)) |
23 | 17, 22 | bitr4id 289 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊆ On → (Tr 𝑥 ↔ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
24 | 23 | pm5.32i 574 |
. . . . . . . . . . . 12
⊢ ((𝑥 ⊆ On ∧ Tr 𝑥) ↔ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
25 | 6, 16, 24 | 3bitri 296 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On ↔ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥)) |
26 | 25 | anbi1i 623 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))) |
27 | | onelon 6276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) |
28 | 27, 19 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Pred( E , On, 𝑦) = 𝑦) |
29 | 28 | reseq2d 5880 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑓 ↾ Pred( E , On, 𝑦)) = (𝑓 ↾ 𝑦)) |
30 | 29 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ 𝑦))) |
31 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑥) |
32 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑓 ∈ V |
33 | 32 | resex 5928 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ↾ 𝑦) ∈ V |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑥 → (𝑓 ↾ 𝑦) ∈ V) |
35 | 31, 34 | opco2 7936 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝑥 → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ 𝑦)) = (𝐹‘(𝑓 ↾ 𝑦))) |
36 | 35 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ 𝑦)) = (𝐹‘(𝑓 ↾ 𝑦))) |
37 | 30, 36 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) = (𝐹‘(𝑓 ↾ 𝑦))) |
38 | 37 | eqeq2d 2749 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
39 | 38 | ralbidva 3119 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
40 | 39 | pm5.32i 574 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
41 | 26, 40 | bitr3i 276 |
. . . . . . . . 9
⊢ (((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
42 | 41 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑥 ∧ ((𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
43 | | an12 641 |
. . . . . . . 8
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
44 | 4, 42, 43 | 3bitri 296 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ (𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
45 | 44 | exbii 1851 |
. . . . . 6
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
46 | | df-rex 3069 |
. . . . . 6
⊢
(∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦))))) |
47 | 45, 46 | bitr4i 277 |
. . . . 5
⊢
(∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦)))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))) |
48 | 47 | abbii 2809 |
. . . 4
⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
49 | 48 | unieqi 4849 |
. . 3
⊢ ∪ {𝑓
∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ On ∧ ∀𝑦 ∈ 𝑥 Pred( E , On, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred( E , On, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
50 | 3, 49 | eqtri 2766 |
. 2
⊢ frecs( E
, On, (𝐹 ∘
2nd )) = ∪ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
51 | 1, 2, 50 | 3eqtri 2770 |
1
⊢
recs(𝐹) = ∪ {𝑓
∣ ∃𝑥 ∈ On
(𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |