| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffrecs | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
| Ref | Expression |
|---|---|
| nffrecs.1 | ⊢ Ⅎ𝑥𝑅 |
| nffrecs.2 | ⊢ Ⅎ𝑥𝐴 |
| nffrecs.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffrecs | ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-frecs 8285 | . 2 ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
| 3 | nfcv 2899 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 4 | nffrecs.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfss 3956 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
| 6 | nffrecs.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
| 7 | nfcv 2899 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 6, 4, 7 | nfpred 6300 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
| 9 | 8, 3 | nfss 3956 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 10 | 3, 9 | nfralw 3295 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 11 | 5, 10 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
| 12 | nffrecs.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 13 | nfcv 2899 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
| 14 | 13, 8 | nfres 5973 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 15 | 7, 12, 14 | nfov 7440 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 16 | 15 | nfeq2 2917 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 17 | 3, 16 | nfralw 3295 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 18 | 2, 11, 17 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 19 | 18 | nfex 2325 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 20 | 19 | nfab 2905 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 21 | 20 | nfuni 4895 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 22 | 1, 21 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 {cab 2714 Ⅎwnfc 2884 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 ↾ cres 5661 Predcpred 6294 Fn wfn 6531 ‘cfv 6536 (class class class)co 7410 frecscfrecs 8284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fv 6544 df-ov 7413 df-frecs 8285 |
| This theorem is referenced by: nfwrecs 8320 |
| Copyright terms: Public domain | W3C validator |