MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffrecs Structured version   Visualization version   GIF version

Theorem nffrecs 8307
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.)
Hypotheses
Ref Expression
nffrecs.1 𝑥𝑅
nffrecs.2 𝑥𝐴
nffrecs.3 𝑥𝐹
Assertion
Ref Expression
nffrecs 𝑥frecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nffrecs
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frecs 8305 . 2 frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2 nfv 1912 . . . . . 6 𝑥 𝑓 Fn 𝑦
3 nfcv 2903 . . . . . . . 8 𝑥𝑦
4 nffrecs.2 . . . . . . . 8 𝑥𝐴
53, 4nfss 3988 . . . . . . 7 𝑥 𝑦𝐴
6 nffrecs.1 . . . . . . . . . 10 𝑥𝑅
7 nfcv 2903 . . . . . . . . . 10 𝑥𝑧
86, 4, 7nfpred 6328 . . . . . . . . 9 𝑥Pred(𝑅, 𝐴, 𝑧)
98, 3nfss 3988 . . . . . . . 8 𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
103, 9nfralw 3309 . . . . . . 7 𝑥𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
115, 10nfan 1897 . . . . . 6 𝑥(𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦)
12 nffrecs.3 . . . . . . . . 9 𝑥𝐹
13 nfcv 2903 . . . . . . . . . 10 𝑥𝑓
1413, 8nfres 6002 . . . . . . . . 9 𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))
157, 12, 14nfov 7461 . . . . . . . 8 𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
1615nfeq2 2921 . . . . . . 7 𝑥(𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
173, 16nfralw 3309 . . . . . 6 𝑥𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
182, 11, 17nf3an 1899 . . . . 5 𝑥(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918nfex 2323 . . . 4 𝑥𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
2019nfab 2909 . . 3 𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2120nfuni 4919 . 2 𝑥 {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
221, 21nfcxfr 2901 1 𝑥frecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wex 1776  {cab 2712  wnfc 2888  wral 3059  wss 3963   cuni 4912  cres 5691  Predcpred 6322   Fn wfn 6558  cfv 6563  (class class class)co 7431  frecscfrecs 8304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fv 6571  df-ov 7434  df-frecs 8305
This theorem is referenced by:  nfwrecs  8340
  Copyright terms: Public domain W3C validator