![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nffrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
Ref | Expression |
---|---|
nffrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nffrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nffrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffrecs | ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frecs 32645 | . 2 ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
2 | nfv 1873 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
3 | nfcv 2932 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
4 | nffrecs.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfss 3851 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
6 | nffrecs.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
7 | nfcv 2932 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 4, 7 | nfpred 5991 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
9 | 8, 3 | nfss 3851 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
10 | 3, 9 | nfral 3174 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
11 | 5, 10 | nfan 1862 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
12 | nffrecs.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
13 | nfcv 2932 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
14 | 13, 8 | nfres 5697 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
15 | 7, 12, 14 | nfov 7006 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
16 | 15 | nfeq2 2947 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
17 | 3, 16 | nfral 3174 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
18 | 2, 11, 17 | nf3an 1864 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
19 | 18 | nfex 2264 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
20 | 19 | nfab 2938 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
21 | 20 | nfuni 4718 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
22 | 1, 21 | nfcxfr 2930 | 1 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∃wex 1742 {cab 2758 Ⅎwnfc 2916 ∀wral 3088 ⊆ wss 3829 ∪ cuni 4712 ↾ cres 5409 Predcpred 5985 Fn wfn 6183 ‘cfv 6188 (class class class)co 6976 frecscfrecs 32644 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-xp 5413 df-cnv 5415 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-iota 6152 df-fv 6196 df-ov 6979 df-frecs 32645 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |