![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
Ref | Expression |
---|---|
nffrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nffrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nffrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffrecs | ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frecs 8322 | . 2 ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
2 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
3 | nfcv 2908 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
4 | nffrecs.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfss 4001 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
6 | nffrecs.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
7 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 4, 7 | nfpred 6337 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
9 | 8, 3 | nfss 4001 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
10 | 3, 9 | nfralw 3317 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
11 | 5, 10 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
12 | nffrecs.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
13 | nfcv 2908 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
14 | 13, 8 | nfres 6011 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
15 | 7, 12, 14 | nfov 7478 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
16 | 15 | nfeq2 2926 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
17 | 3, 16 | nfralw 3317 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
18 | 2, 11, 17 | nf3an 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
19 | 18 | nfex 2328 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
20 | 19 | nfab 2914 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
21 | 20 | nfuni 4938 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
22 | 1, 21 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 {cab 2717 Ⅎwnfc 2893 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 ↾ cres 5702 Predcpred 6331 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 frecscfrecs 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fv 6581 df-ov 7451 df-frecs 8322 |
This theorem is referenced by: nfwrecs 8357 |
Copyright terms: Public domain | W3C validator |