Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.) |
Ref | Expression |
---|---|
nffrecs.1 | ⊢ Ⅎ𝑥𝑅 |
nffrecs.2 | ⊢ Ⅎ𝑥𝐴 |
nffrecs.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffrecs | ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-frecs 8023 | . 2 ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
2 | nfv 1922 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
3 | nfcv 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
4 | nffrecs.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfss 3892 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
6 | nffrecs.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
7 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 4, 7 | nfpred 6165 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
9 | 8, 3 | nfss 3892 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
10 | 3, 9 | nfralw 3147 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
11 | 5, 10 | nfan 1907 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
12 | nffrecs.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
13 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
14 | 13, 8 | nfres 5853 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
15 | 7, 12, 14 | nfov 7243 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
16 | 15 | nfeq2 2921 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
17 | 3, 16 | nfralw 3147 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
18 | 2, 11, 17 | nf3an 1909 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
19 | 18 | nfex 2323 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
20 | 19 | nfab 2910 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
21 | 20 | nfuni 4826 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
22 | 1, 21 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥frecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∃wex 1787 {cab 2714 Ⅎwnfc 2884 ∀wral 3061 ⊆ wss 3866 ∪ cuni 4819 ↾ cres 5553 Predcpred 6159 Fn wfn 6375 ‘cfv 6380 (class class class)co 7213 frecscfrecs 8022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-cnv 5559 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-iota 6338 df-fv 6388 df-ov 7216 df-frecs 8023 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |