MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffrecs Structured version   Visualization version   GIF version

Theorem nffrecs 8308
Description: Bound-variable hypothesis builder for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.)
Hypotheses
Ref Expression
nffrecs.1 𝑥𝑅
nffrecs.2 𝑥𝐴
nffrecs.3 𝑥𝐹
Assertion
Ref Expression
nffrecs 𝑥frecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nffrecs
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frecs 8306 . 2 frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2 nfv 1914 . . . . . 6 𝑥 𝑓 Fn 𝑦
3 nfcv 2905 . . . . . . . 8 𝑥𝑦
4 nffrecs.2 . . . . . . . 8 𝑥𝐴
53, 4nfss 3976 . . . . . . 7 𝑥 𝑦𝐴
6 nffrecs.1 . . . . . . . . . 10 𝑥𝑅
7 nfcv 2905 . . . . . . . . . 10 𝑥𝑧
86, 4, 7nfpred 6326 . . . . . . . . 9 𝑥Pred(𝑅, 𝐴, 𝑧)
98, 3nfss 3976 . . . . . . . 8 𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
103, 9nfralw 3311 . . . . . . 7 𝑥𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
115, 10nfan 1899 . . . . . 6 𝑥(𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦)
12 nffrecs.3 . . . . . . . . 9 𝑥𝐹
13 nfcv 2905 . . . . . . . . . 10 𝑥𝑓
1413, 8nfres 5999 . . . . . . . . 9 𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))
157, 12, 14nfov 7461 . . . . . . . 8 𝑥(𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
1615nfeq2 2923 . . . . . . 7 𝑥(𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
173, 16nfralw 3311 . . . . . 6 𝑥𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
182, 11, 17nf3an 1901 . . . . 5 𝑥(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918nfex 2324 . . . 4 𝑥𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
2019nfab 2911 . . 3 𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2120nfuni 4914 . 2 𝑥 {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝑧𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
221, 21nfcxfr 2903 1 𝑥frecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1087   = wceq 1540  wex 1779  {cab 2714  wnfc 2890  wral 3061  wss 3951   cuni 4907  cres 5687  Predcpred 6320   Fn wfn 6556  cfv 6561  (class class class)co 7431  frecscfrecs 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fv 6569  df-ov 7434  df-frecs 8306
This theorem is referenced by:  nfwrecs  8341
  Copyright terms: Public domain W3C validator