MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frecseq123 Structured version   Visualization version   GIF version

Theorem frecseq123 8284
Description: Equality theorem for the well-founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.)
Assertion
Ref Expression
frecseq123 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺))

Proof of Theorem frecseq123
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐴 = 𝐵)
21sseq2d 4005 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑥𝐴𝑥𝐵))
3 equid 2007 . . . . . . . . . . 11 𝑦 = 𝑦
4 predeq123 6301 . . . . . . . . . . 11 ((𝑅 = 𝑆𝐴 = 𝐵𝑦 = 𝑦) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
53, 4mp3an3 1446 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
653adant3 1129 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
76sseq1d 4004 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
87ralbidv 3168 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
92, 8anbi12d 630 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)))
10 simp3 1135 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐹 = 𝐺)
1110oveqd 7432 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
126reseq2d 5979 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
1312oveq2d 7431 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1411, 13eqtrd 2765 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1514eqeq2d 2736 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
1615ralbidv 3168 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
179, 163anbi23d 1435 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1817exbidv 1916 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1918abbidv 2794 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
2019unieqd 4916 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
21 df-frecs 8283 . 2 frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
22 df-frecs 8283 . 2 frecs(𝑆, 𝐵, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}
2320, 21, 223eqtr4g 2790 1 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wex 1773  {cab 2702  wral 3051  wss 3940   cuni 4903  cres 5674  Predcpred 6299   Fn wfn 6537  cfv 6542  (class class class)co 7415  frecscfrecs 8282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-iota 6494  df-fv 6550  df-ov 7418  df-frecs 8283
This theorem is referenced by:  wrecseq123  8316  csbwrecsg  8323
  Copyright terms: Public domain W3C validator