| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1138 |
. . . . . . . 8
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → 𝐴 = 𝐵) |
| 2 | 1 | sseq2d 4016 |
. . . . . . 7
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (𝑥 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐵)) |
| 3 | | equid 2011 |
. . . . . . . . . . 11
⊢ 𝑦 = 𝑦 |
| 4 | | predeq123 6322 |
. . . . . . . . . . 11
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑦 = 𝑦) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦)) |
| 5 | 3, 4 | mp3an3 1452 |
. . . . . . . . . 10
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦)) |
| 6 | 5 | 3adant3 1133 |
. . . . . . . . 9
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦)) |
| 7 | 6 | sseq1d 4015 |
. . . . . . . 8
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)) |
| 8 | 7 | ralbidv 3178 |
. . . . . . 7
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)) |
| 9 | 2, 8 | anbi12d 632 |
. . . . . 6
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → ((𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))) |
| 10 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → 𝐹 = 𝐺) |
| 11 | 10 | oveqd 7448 |
. . . . . . . . 9
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 12 | 6 | reseq2d 5997 |
. . . . . . . . . 10
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))) |
| 13 | 12 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))) |
| 14 | 11, 13 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))) |
| 15 | 14 | eqeq2d 2748 |
. . . . . . 7
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → ((𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))) |
| 16 | 15 | ralbidv 3178 |
. . . . . 6
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))) |
| 17 | 9, 16 | 3anbi23d 1441 |
. . . . 5
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))) |
| 18 | 17 | exbidv 1921 |
. . . 4
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))) |
| 19 | 18 | abbidv 2808 |
. . 3
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}) |
| 20 | 19 | unieqd 4920 |
. 2
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}) |
| 21 | | df-frecs 8306 |
. 2
⊢
frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 22 | | df-frecs 8306 |
. 2
⊢
frecs(𝑆, 𝐵, 𝐺) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐵 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))} |
| 23 | 20, 21, 22 | 3eqtr4g 2802 |
1
⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺)) |