| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csbuni 4936 | . . 3
⊢
⦋𝐴 /
𝑥⦌∪ {𝑓
∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} | 
| 2 |  | csbab 4440 | . . . . 5
⊢
⦋𝐴 /
𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} | 
| 3 |  | sbcex2 3850 | . . . . . . 7
⊢
([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) | 
| 4 |  | sbc3an 3855 | . . . . . . . . 9
⊢
([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) | 
| 5 |  | sbcg 3863 | . . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑓 Fn 𝑧 ↔ 𝑓 Fn 𝑧)) | 
| 6 |  | sbcan 3838 | . . . . . . . . . . 11
⊢
([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) | 
| 7 |  | sbcssg 4520 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) | 
| 8 |  | csbconstg 3918 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) | 
| 9 | 8 | sseq1d 4015 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) | 
| 10 | 7, 9 | bitrd 279 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) | 
| 11 |  | sbcralg 3874 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) | 
| 12 |  | sbcssg 4520 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧)) | 
| 13 |  | csbpredg 6327 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦)) | 
| 14 |  | csbconstg 3918 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | 
| 15 |  | predeq3 6325 | . . . . . . . . . . . . . . . . . 18
⊢
(⦋𝐴 /
𝑥⦌𝑦 = 𝑦 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) | 
| 16 | 14, 15 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) | 
| 17 | 13, 16 | eqtrd 2777 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) | 
| 18 | 17, 8 | sseq12d 4017 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) | 
| 19 | 12, 18 | bitrd 279 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) | 
| 20 | 19 | ralbidv 3178 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) | 
| 21 | 11, 20 | bitrd 279 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) | 
| 22 | 10, 21 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) | 
| 23 | 6, 22 | bitrid 283 | . . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) | 
| 24 |  | sbcralg 3874 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) | 
| 25 |  | sbceqg 4412 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) | 
| 26 |  | csbconstg 3918 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = (𝑓‘𝑦)) | 
| 27 |  | csbov123 7475 | . . . . . . . . . . . . . . 15
⊢
⦋𝐴 /
𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (⦋𝐴 / 𝑥⦌𝑦⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) | 
| 28 |  | csbres 6000 | . . . . . . . . . . . . . . . . 17
⊢
⦋𝐴 /
𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) | 
| 29 |  | csbconstg 3918 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑓 = 𝑓) | 
| 30 | 29, 17 | reseq12d 5998 | . . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) | 
| 31 | 28, 30 | eqtrid 2789 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) | 
| 32 | 14, 31 | oveq12d 7449 | . . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑦⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) | 
| 33 | 27, 32 | eqtrid 2789 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) | 
| 34 | 26, 33 | eqeq12d 2753 | . . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) | 
| 35 | 25, 34 | bitrd 279 | . . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) | 
| 36 | 35 | ralbidv 3178 | . . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) | 
| 37 | 24, 36 | bitrd 279 | . . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) | 
| 38 | 5, 23, 37 | 3anbi123d 1438 | . . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) | 
| 39 | 4, 38 | bitrid 283 | . . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) | 
| 40 | 39 | exbidv 1921 | . . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) | 
| 41 | 3, 40 | bitrid 283 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) | 
| 42 | 41 | abbidv 2808 | . . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) | 
| 43 | 2, 42 | eqtrid 2789 | . . . 4
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) | 
| 44 | 43 | unieqd 4920 | . . 3
⊢ (𝐴 ∈ 𝑉 → ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) | 
| 45 | 1, 44 | eqtrid 2789 | . 2
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) | 
| 46 |  | df-frecs 8306 | . . 3
⊢
frecs(𝑅, 𝐷, 𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} | 
| 47 | 46 | csbeq2i 3907 | . 2
⊢
⦋𝐴 /
𝑥⦌frecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} | 
| 48 |  | df-frecs 8306 | . 2
⊢
frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))} | 
| 49 | 45, 47, 48 | 3eqtr4g 2802 | 1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, 𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |