Step | Hyp | Ref
| Expression |
1 | | csbuni 4876 |
. . 3
⊢
⦋𝐴 /
𝑥⦌∪ {𝑓
∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
2 | | csbab 4377 |
. . . . 5
⊢
⦋𝐴 /
𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
3 | | sbcex2 3786 |
. . . . . . 7
⊢
([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
4 | | sbc3an 3791 |
. . . . . . . . 9
⊢
([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
5 | | sbcg 3800 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑓 Fn 𝑧 ↔ 𝑓 Fn 𝑧)) |
6 | | sbcan 3772 |
. . . . . . . . . . 11
⊢
([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) |
7 | | sbcssg 4460 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
8 | | csbconstg 3856 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) |
9 | 8 | sseq1d 3957 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
10 | 7, 9 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ↔ 𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷)) |
11 | | sbcralg 3812 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧)) |
12 | | sbcssg 4460 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧)) |
13 | | csbpredg 6207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦)) |
14 | | csbconstg 3856 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) |
15 | | predeq3 6205 |
. . . . . . . . . . . . . . . . . 18
⊢
(⦋𝐴 /
𝑥⦌𝑦 = 𝑦 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
17 | 13, 16 | eqtrd 2780 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) = Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)) |
18 | 17, 8 | sseq12d 3959 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦) ⊆ ⦋𝐴 / 𝑥⦌𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
19 | 12, 18 | bitrd 278 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
20 | 19 | ralbidv 3123 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥]Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
21 | 11, 20 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧 ↔ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧)) |
22 | 10, 21 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑧 ⊆ 𝐷 ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) |
23 | 6, 22 | bitrid 282 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ↔ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧))) |
24 | | sbcralg 3812 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
25 | | sbceqg 4349 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))) |
26 | | csbconstg 3856 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = (𝑓‘𝑦)) |
27 | | csbov123 7314 |
. . . . . . . . . . . . . . 15
⊢
⦋𝐴 /
𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (⦋𝐴 / 𝑥⦌𝑦⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) |
28 | | csbres 5893 |
. . . . . . . . . . . . . . . . 17
⊢
⦋𝐴 /
𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) |
29 | | csbconstg 3856 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑓 = 𝑓) |
30 | 29, 17 | reseq12d 5891 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑓 ↾ ⦋𝐴 / 𝑥⦌Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) |
31 | 28, 30 | eqtrid 2792 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)) = (𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))) |
32 | 14, 31 | oveq12d 7290 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑦⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) |
33 | 27, 32 | eqtrid 2792 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))) |
34 | 26, 33 | eqeq12d 2756 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌(𝑓‘𝑦) = ⦋𝐴 / 𝑥⦌(𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
35 | 25, 34 | bitrd 278 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
36 | 35 | ralbidv 3123 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑧 [𝐴 / 𝑥](𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
37 | 24, 36 | bitrd 278 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))) ↔ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))) |
38 | 5, 23, 37 | 3anbi123d 1435 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (([𝐴 / 𝑥]𝑓 Fn 𝑧 ∧ [𝐴 / 𝑥](𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ [𝐴 / 𝑥]∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
39 | 4, 38 | bitrid 282 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ (𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
40 | 39 | exbidv 1928 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (∃𝑧[𝐴 / 𝑥](𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
41 | 3, 40 | bitrid 282 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦)))) ↔ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦)))))) |
42 | 41 | abbidv 2809 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ [𝐴 / 𝑥]∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
43 | 2, 42 | eqtrid 2792 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
44 | 43 | unieqd 4859 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∪
⦋𝐴 / 𝑥⦌{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
45 | 1, 44 | eqtrid 2792 |
. 2
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))}) |
46 | | df-frecs 8089 |
. . 3
⊢
frecs(𝑅, 𝐷, 𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
47 | 46 | csbeq2i 3845 |
. 2
⊢
⦋𝐴 /
𝑥⦌frecs(𝑅, 𝐷, 𝐹) = ⦋𝐴 / 𝑥⦌∪
{𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ 𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(𝑅, 𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐷, 𝑦))))} |
48 | | df-frecs 8089 |
. 2
⊢
frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹) = ∪ {𝑓 ∣ ∃𝑧(𝑓 Fn 𝑧 ∧ (𝑧 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ∧ ∀𝑦 ∈ 𝑧 Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦) ⊆ 𝑧) ∧ ∀𝑦 ∈ 𝑧 (𝑓‘𝑦) = (𝑦⦋𝐴 / 𝑥⦌𝐹(𝑓 ↾ Pred(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, 𝑦))))} |
49 | 45, 47, 48 | 3eqtr4g 2805 |
1
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌frecs(𝑅, 𝐷, 𝐹) = frecs(⦋𝐴 / 𝑥⦌𝑅, ⦋𝐴 / 𝑥⦌𝐷, ⦋𝐴 / 𝑥⦌𝐹)) |