MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frrlem5 Structured version   Visualization version   GIF version

Theorem frrlem5 8294
Description: Lemma for well-founded recursion. State the well-founded recursion generator in terms of the acceptable functions. (Contributed by Scott Fenton, 27-Aug-2022.)
Hypotheses
Ref Expression
frrlem5.1 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
frrlem5.2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frrlem5 𝐹 = 𝐵
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑓)   𝐹(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5
StepHypRef Expression
1 df-frecs 8285 . 2 frecs(𝑅, 𝐴, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
2 frrlem5.2 . 2 𝐹 = frecs(𝑅, 𝐴, 𝐺)
3 frrlem5.1 . . 3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
43unieqi 4900 . 2 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
51, 2, 43eqtr4i 2769 1 𝐹 = 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  {cab 2714  wral 3052  wss 3931   cuni 4888  cres 5661  Predcpred 6294   Fn wfn 6531  cfv 6536  (class class class)co 7410  frecscfrecs 8284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-uni 4889  df-frecs 8285
This theorem is referenced by:  frrlem6  8295  frrlem7  8296  frrlem8  8297  frrlem9  8298  frrlem10  8299  frrlem14  8303
  Copyright terms: Public domain W3C validator