![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfwrecsOLD | Structured version Visualization version GIF version |
Description: Obsolete definition of the well-ordered recursive function generator as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.) |
Ref | Expression |
---|---|
dfwrecsOLD | ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8336 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | df-frecs 8305 | . 2 ⊢ frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
3 | vex 3482 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
4 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 𝑦 ∈ V) |
5 | vex 3482 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
6 | 5 | resex 6049 | . . . . . . . . . . 11 ⊢ (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V) |
8 | 4, 7 | opco2 8148 | . . . . . . . . 9 ⊢ (⊤ → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
9 | 8 | mptru 1544 | . . . . . . . 8 ⊢ (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
10 | 9 | eqeq2i 2748 | . . . . . . 7 ⊢ ((𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
11 | 10 | ralbii 3091 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
12 | 11 | 3anbi3i 1158 | . . . . 5 ⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
13 | 12 | exbii 1845 | . . . 4 ⊢ (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
14 | 13 | abbii 2807 | . . 3 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
15 | 14 | unieqi 4924 | . 2 ⊢ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
16 | 1, 2, 15 | 3eqtri 2767 | 1 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1537 ⊤wtru 1538 ∃wex 1776 ∈ wcel 2106 {cab 2712 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 ∪ cuni 4912 ↾ cres 5691 ∘ ccom 5693 Predcpred 6322 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 2nd c2nd 8012 frecscfrecs 8304 wrecscwrecs 8335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 |
This theorem is referenced by: wrecseq123OLD 8339 nfwrecsOLD 8341 wfrrelOLD 8353 wfrdmssOLD 8354 wfrdmclOLD 8356 wfrfunOLD 8358 wfrlem12OLD 8359 wfrlem16OLD 8363 wfrlem17OLD 8364 dfrecs3OLD 8412 |
Copyright terms: Public domain | W3C validator |