| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfwrecsOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete definition of the well-ordered recursive function generator as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.) |
| Ref | Expression |
|---|---|
| dfwrecsOLD | ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wrecs 8337 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
| 2 | df-frecs 8306 | . 2 ⊢ frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
| 3 | vex 3484 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
| 4 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 𝑦 ∈ V) |
| 5 | vex 3484 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
| 6 | 5 | resex 6047 | . . . . . . . . . . 11 ⊢ (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V |
| 7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V) |
| 8 | 4, 7 | opco2 8149 | . . . . . . . . 9 ⊢ (⊤ → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 9 | 8 | mptru 1547 | . . . . . . . 8 ⊢ (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
| 10 | 9 | eqeq2i 2750 | . . . . . . 7 ⊢ ((𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 11 | 10 | ralbii 3093 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
| 12 | 11 | 3anbi3i 1160 | . . . . 5 ⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 13 | 12 | exbii 1848 | . . . 4 ⊢ (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
| 14 | 13 | abbii 2809 | . . 3 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 15 | 14 | unieqi 4919 | . 2 ⊢ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| 16 | 1, 2, 15 | 3eqtri 2769 | 1 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1540 ⊤wtru 1541 ∃wex 1779 ∈ wcel 2108 {cab 2714 ∀wral 3061 Vcvv 3480 ⊆ wss 3951 ∪ cuni 4907 ↾ cres 5687 ∘ ccom 5689 Predcpred 6320 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 2nd c2nd 8013 frecscfrecs 8305 wrecscwrecs 8336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 df-ov 7434 df-2nd 8015 df-frecs 8306 df-wrecs 8337 |
| This theorem is referenced by: wrecseq123OLD 8340 nfwrecsOLD 8342 wfrrelOLD 8354 wfrdmssOLD 8355 wfrdmclOLD 8357 wfrfunOLD 8359 wfrlem12OLD 8360 wfrlem16OLD 8364 wfrlem17OLD 8365 dfrecs3OLD 8413 |
| Copyright terms: Public domain | W3C validator |