![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfwrecsOLD | Structured version Visualization version GIF version |
Description: Obsolete definition of the well-ordered recursive function generator as of 18-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.) |
Ref | Expression |
---|---|
dfwrecsOLD | ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wrecs 8296 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
2 | df-frecs 8265 | . 2 ⊢ frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | |
3 | vex 3478 | . . . . . . . . . . 11 ⊢ 𝑦 ∈ V | |
4 | 3 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → 𝑦 ∈ V) |
5 | vex 3478 | . . . . . . . . . . . 12 ⊢ 𝑓 ∈ V | |
6 | 5 | resex 6029 | . . . . . . . . . . 11 ⊢ (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V |
7 | 6 | a1i 11 | . . . . . . . . . 10 ⊢ (⊤ → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) ∈ V) |
8 | 4, 7 | opco2 8109 | . . . . . . . . 9 ⊢ (⊤ → (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
9 | 8 | mptru 1548 | . . . . . . . 8 ⊢ (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) |
10 | 9 | eqeq2i 2745 | . . . . . . 7 ⊢ ((𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
11 | 10 | ralbii 3093 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
12 | 11 | 3anbi3i 1159 | . . . . 5 ⊢ ((𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
13 | 12 | exbii 1850 | . . . 4 ⊢ (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
14 | 13 | abbii 2802 | . . 3 ⊢ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
15 | 14 | unieqi 4921 | . 2 ⊢ ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦(𝐹 ∘ 2nd )(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
16 | 1, 2, 15 | 3eqtri 2764 | 1 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1087 = wceq 1541 ⊤wtru 1542 ∃wex 1781 ∈ wcel 2106 {cab 2709 ∀wral 3061 Vcvv 3474 ⊆ wss 3948 ∪ cuni 4908 ↾ cres 5678 ∘ ccom 5680 Predcpred 6299 Fn wfn 6538 ‘cfv 6543 (class class class)co 7408 2nd c2nd 7973 frecscfrecs 8264 wrecscwrecs 8295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fo 6549 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 |
This theorem is referenced by: wrecseq123OLD 8299 nfwrecsOLD 8301 wfrrelOLD 8313 wfrdmssOLD 8314 wfrdmclOLD 8316 wfrfunOLD 8318 wfrlem12OLD 8319 wfrlem16OLD 8323 wfrlem17OLD 8324 dfrecs3OLD 8372 |
Copyright terms: Public domain | W3C validator |