| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > df-hvsub | Structured version Visualization version GIF version | ||
| Description: Define vector subtraction. See hvsubvali 31039 for its value and hvsubcli 31040 for its closure. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-hvsub | ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmv 30944 | . 2 class −ℎ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | chba 30938 | . . 3 class ℋ | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑥 |
| 6 | c1 11156 | . . . . . 6 class 1 | |
| 7 | 6 | cneg 11493 | . . . . 5 class -1 |
| 8 | 3 | cv 1539 | . . . . 5 class 𝑦 |
| 9 | csm 30940 | . . . . 5 class ·ℎ | |
| 10 | 7, 8, 9 | co 7431 | . . . 4 class (-1 ·ℎ 𝑦) |
| 11 | cva 30939 | . . . 4 class +ℎ | |
| 12 | 5, 10, 11 | co 7431 | . . 3 class (𝑥 +ℎ (-1 ·ℎ 𝑦)) |
| 13 | 2, 3, 4, 4, 12 | cmpo 7433 | . 2 class (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
| 14 | 1, 13 | wceq 1540 | 1 wff −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1 ·ℎ 𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: h2hvs 30996 hvsubf 31034 hvsubval 31035 |
| Copyright terms: Public domain | W3C validator |