HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Visualization version   GIF version

Theorem h2hlm 29243
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = (BaseSet‘𝑈)
h2hl.4 𝐷 = (IndMet‘𝑈)
h2hl.5 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
h2hlm 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))

Proof of Theorem h2hlm
Dummy variables 𝑥 𝑓 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 29235 . . 3 𝑣 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)}
21relopabiv 5719 . 2 Rel ⇝𝑣
3 relres 5909 . 2 Rel ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
41eleq2i 2830 . . 3 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)})
5 opabidw 5431 . . 3 (⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
6 h2hl.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
76hlex 29161 . . . . . . 7 ℋ ∈ V
8 nnex 11909 . . . . . . 7 ℕ ∈ V
97, 8elmap 8617 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
109anbi1i 623 . . . . 5 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
11 df-br 5071 . . . . . . 7 (𝑓(⇝𝑡𝐽)𝑥 ↔ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))
12 h2hl.5 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 h2hl.2 . . . . . . . . . 10 𝑈 ∈ NrmCVec
14 h2hl.4 . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
156, 14imsxmet 28955 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1613, 15mp1i 13 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
17 nnuz 12550 . . . . . . . . 9 ℕ = (ℤ‘1)
18 1zzd 12281 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
19 eqidd 2739 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
20 id 22 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
2112, 16, 17, 18, 19, 20lmmbrf 24331 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦)))
22 eluznn 12587 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 ffvelrn 6941 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
24 h2hl.1 . . . . . . . . . . . . . . . . . 18 𝑈 = ⟨⟨ + , · ⟩, norm
2524, 13, 6, 14h2hmetdval 29241 . . . . . . . . . . . . . . . . 17 (((𝑓𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2623, 25sylan 579 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2726breq1d 5080 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2827an32s 648 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2922, 28sylan2 592 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3029anassrs 467 . . . . . . . . . . . 12 ((((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3130ralbidva 3119 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3231rexbidva 3224 . . . . . . . . . 10 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3332ralbidv 3120 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3433pm5.32da 578 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3521, 34bitrd 278 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3611, 35bitr3id 284 . . . . . 6 (𝑓:ℕ⟶ ℋ → (⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3736pm5.32i 574 . . . . 5 ((𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3810, 37bitr2i 275 . . . 4 ((𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
39 anass 468 . . . 4 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
40 opelres 5886 . . . . 5 (𝑥 ∈ V → (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))))
4140elv 3428 . . . 4 (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
4238, 39, 413bitr4i 302 . . 3 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
434, 5, 423bitri 296 . 2 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
442, 3, 43eqrelriiv 5689 1 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cop 4564   class class class wbr 5070  {copab 5132  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  1c1 10803   < clt 10940  cn 11903  cuz 12511  +crp 12659  ∞Metcxmet 20495  MetOpencmopn 20500  𝑡clm 22285  NrmCVeccnv 28847  BaseSetcba 28849  IndMetcims 28854  chba 29182   + cva 29183   · csm 29184  normcno 29186   cmv 29188  𝑣 chli 29190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-lm 22288  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-hvsub 29234  df-hlim 29235
This theorem is referenced by:  axhcompl-zf  29261  hlimadd  29456  hhlm  29462
  Copyright terms: Public domain W3C validator