HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Visualization version   GIF version

Theorem h2hlm 31008
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = (BaseSet‘𝑈)
h2hl.4 𝐷 = (IndMet‘𝑈)
h2hl.5 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
h2hlm 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))

Proof of Theorem h2hlm
Dummy variables 𝑥 𝑓 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 31000 . . 3 𝑣 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)}
21relopabiv 5832 . 2 Rel ⇝𝑣
3 relres 6025 . 2 Rel ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
41eleq2i 2830 . . 3 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)})
5 opabidw 5533 . . 3 (⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
6 h2hl.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
76hlex 30926 . . . . . . 7 ℋ ∈ V
8 nnex 12269 . . . . . . 7 ℕ ∈ V
97, 8elmap 8909 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
109anbi1i 624 . . . . 5 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
11 df-br 5148 . . . . . . 7 (𝑓(⇝𝑡𝐽)𝑥 ↔ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))
12 h2hl.5 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 h2hl.2 . . . . . . . . . 10 𝑈 ∈ NrmCVec
14 h2hl.4 . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
156, 14imsxmet 30720 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1613, 15mp1i 13 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
17 nnuz 12918 . . . . . . . . 9 ℕ = (ℤ‘1)
18 1zzd 12645 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
19 eqidd 2735 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
20 id 22 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
2112, 16, 17, 18, 19, 20lmmbrf 25309 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦)))
22 eluznn 12957 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 ffvelcdm 7100 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
24 h2hl.1 . . . . . . . . . . . . . . . . . 18 𝑈 = ⟨⟨ + , · ⟩, norm
2524, 13, 6, 14h2hmetdval 31006 . . . . . . . . . . . . . . . . 17 (((𝑓𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2623, 25sylan 580 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2726breq1d 5157 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2827an32s 652 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2922, 28sylan2 593 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3029anassrs 467 . . . . . . . . . . . 12 ((((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3130ralbidva 3173 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3231rexbidva 3174 . . . . . . . . . 10 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3332ralbidv 3175 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3433pm5.32da 579 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3521, 34bitrd 279 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3611, 35bitr3id 285 . . . . . 6 (𝑓:ℕ⟶ ℋ → (⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3736pm5.32i 574 . . . . 5 ((𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3810, 37bitr2i 276 . . . 4 ((𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
39 anass 468 . . . 4 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
40 opelres 6005 . . . . 5 (𝑥 ∈ V → (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))))
4140elv 3482 . . . 4 (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
4238, 39, 413bitr4i 303 . . 3 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
434, 5, 423bitri 297 . 2 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
442, 3, 43eqrelriiv 5802 1 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  cop 4636   class class class wbr 5147  {copab 5209  cres 5690  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864  1c1 11153   < clt 11292  cn 12263  cuz 12875  +crp 13031  ∞Metcxmet 21366  MetOpencmopn 21371  𝑡clm 23249  NrmCVeccnv 30612  BaseSetcba 30614  IndMetcims 30619  chba 30947   + cva 30948   · csm 30949  normcno 30951   cmv 30953  𝑣 chli 30955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-lm 23252  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-hvsub 30999  df-hlim 31000
This theorem is referenced by:  axhcompl-zf  31026  hlimadd  31221  hhlm  31227
  Copyright terms: Public domain W3C validator