Step | Hyp | Ref
| Expression |
1 | | df-hlim 29235 |
. . 3
⊢
⇝𝑣 = {〈𝑓, 𝑥〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)} |
2 | 1 | relopabiv 5719 |
. 2
⊢ Rel
⇝𝑣 |
3 | | relres 5909 |
. 2
⊢ Rel
((⇝𝑡‘𝐽) ↾ ( ℋ ↑m
ℕ)) |
4 | 1 | eleq2i 2830 |
. . 3
⊢
(〈𝑓, 𝑥〉 ∈
⇝𝑣 ↔ 〈𝑓, 𝑥〉 ∈ {〈𝑓, 𝑥〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)}) |
5 | | opabidw 5431 |
. . 3
⊢
(〈𝑓, 𝑥〉 ∈ {〈𝑓, 𝑥〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
6 | | h2hl.3 |
. . . . . . . 8
⊢ ℋ
= (BaseSet‘𝑈) |
7 | 6 | hlex 29161 |
. . . . . . 7
⊢ ℋ
∈ V |
8 | | nnex 11909 |
. . . . . . 7
⊢ ℕ
∈ V |
9 | 7, 8 | elmap 8617 |
. . . . . 6
⊢ (𝑓 ∈ ( ℋ
↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
10 | 9 | anbi1i 623 |
. . . . 5
⊢ ((𝑓 ∈ ( ℋ
↑m ℕ) ∧ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽))) |
11 | | df-br 5071 |
. . . . . . 7
⊢ (𝑓(⇝𝑡‘𝐽)𝑥 ↔ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽)) |
12 | | h2hl.5 |
. . . . . . . . 9
⊢ 𝐽 = (MetOpen‘𝐷) |
13 | | h2hl.2 |
. . . . . . . . . 10
⊢ 𝑈 ∈ NrmCVec |
14 | | h2hl.4 |
. . . . . . . . . . 11
⊢ 𝐷 = (IndMet‘𝑈) |
15 | 6, 14 | imsxmet 28955 |
. . . . . . . . . 10
⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘
ℋ)) |
16 | 13, 15 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶ ℋ →
𝐷 ∈ (∞Met‘
ℋ)) |
17 | | nnuz 12550 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
18 | | 1zzd 12281 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶ ℋ →
1 ∈ ℤ) |
19 | | eqidd 2739 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ ℋ ∧
𝑘 ∈ ℕ) →
(𝑓‘𝑘) = (𝑓‘𝑘)) |
20 | | id 22 |
. . . . . . . . 9
⊢ (𝑓:ℕ⟶ ℋ →
𝑓:ℕ⟶
ℋ) |
21 | 12, 16, 17, 18, 19, 20 | lmmbrf 24331 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶ ℋ →
(𝑓(⇝𝑡‘𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘)𝐷𝑥) < 𝑦))) |
22 | | eluznn 12587 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
23 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶ ℋ ∧
𝑘 ∈ ℕ) →
(𝑓‘𝑘) ∈ ℋ) |
24 | | h2hl.1 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑈 = 〈〈
+ℎ , ·ℎ 〉,
normℎ〉 |
25 | 24, 13, 6, 14 | h2hmetdval 29241 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓‘𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓‘𝑘)𝐷𝑥) = (normℎ‘((𝑓‘𝑘) −ℎ 𝑥))) |
26 | 23, 25 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑘 ∈ ℕ) ∧
𝑥 ∈ ℋ) →
((𝑓‘𝑘)𝐷𝑥) = (normℎ‘((𝑓‘𝑘) −ℎ 𝑥))) |
27 | 26 | breq1d 5080 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑘 ∈ ℕ) ∧
𝑥 ∈ ℋ) →
(((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔
(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
28 | 27 | an32s 648 |
. . . . . . . . . . . . . 14
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
𝑘 ∈ ℕ) →
(((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔
(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
29 | 22, 28 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
(𝑗 ∈ ℕ ∧
𝑘 ∈
(ℤ≥‘𝑗))) → (((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔
(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
30 | 29 | anassrs 467 |
. . . . . . . . . . . 12
⊢ ((((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
𝑗 ∈ ℕ) ∧
𝑘 ∈
(ℤ≥‘𝑗)) → (((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔
(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
31 | 30 | ralbidva 3119 |
. . . . . . . . . . 11
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
32 | 31 | rexbidva 3224 |
. . . . . . . . . 10
⊢ ((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
33 | 32 | ralbidv 3120 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) →
(∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) |
34 | 33 | pm5.32da 578 |
. . . . . . . 8
⊢ (𝑓:ℕ⟶ ℋ →
((𝑥 ∈ ℋ ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝑓‘𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦))) |
35 | 21, 34 | bitrd 278 |
. . . . . . 7
⊢ (𝑓:ℕ⟶ ℋ →
(𝑓(⇝𝑡‘𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦))) |
36 | 11, 35 | bitr3id 284 |
. . . . . 6
⊢ (𝑓:ℕ⟶ ℋ →
(〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦))) |
37 | 36 | pm5.32i 574 |
. . . . 5
⊢ ((𝑓:ℕ⟶ ℋ ∧
〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦))) |
38 | 10, 37 | bitr2i 275 |
. . . 4
⊢ ((𝑓:ℕ⟶ ℋ ∧
(𝑥 ∈ ℋ ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ)
∧ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽))) |
39 | | anass 468 |
. . . 4
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦))) |
40 | | opelres 5886 |
. . . . 5
⊢ (𝑥 ∈ V → (〈𝑓, 𝑥〉 ∈
((⇝𝑡‘𝐽) ↾ ( ℋ ↑m
ℕ)) ↔ (𝑓 ∈
( ℋ ↑m ℕ) ∧ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽)))) |
41 | 40 | elv 3428 |
. . . 4
⊢
(〈𝑓, 𝑥〉 ∈
((⇝𝑡‘𝐽) ↾ ( ℋ ↑m
ℕ)) ↔ (𝑓 ∈
( ℋ ↑m ℕ) ∧ 〈𝑓, 𝑥〉 ∈
(⇝𝑡‘𝐽))) |
42 | 38, 39, 41 | 3bitr4i 302 |
. . 3
⊢ (((𝑓:ℕ⟶ ℋ ∧
𝑥 ∈ ℋ) ∧
∀𝑦 ∈
ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(normℎ‘((𝑓‘𝑘) −ℎ 𝑥)) < 𝑦) ↔ 〈𝑓, 𝑥〉 ∈
((⇝𝑡‘𝐽) ↾ ( ℋ ↑m
ℕ))) |
43 | 4, 5, 42 | 3bitri 296 |
. 2
⊢
(〈𝑓, 𝑥〉 ∈
⇝𝑣 ↔ 〈𝑓, 𝑥〉 ∈
((⇝𝑡‘𝐽) ↾ ( ℋ ↑m
ℕ))) |
44 | 2, 3, 43 | eqrelriiv 5689 |
1
⊢
⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ
↑m ℕ)) |