HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Visualization version   GIF version

Theorem h2hlm 30971
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = (BaseSet‘𝑈)
h2hl.4 𝐷 = (IndMet‘𝑈)
h2hl.5 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
h2hlm 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))

Proof of Theorem h2hlm
Dummy variables 𝑥 𝑓 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 30963 . . 3 𝑣 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)}
21relopabiv 5767 . 2 Rel ⇝𝑣
3 relres 5961 . 2 Rel ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
41eleq2i 2825 . . 3 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)})
5 opabidw 5469 . . 3 (⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
6 h2hl.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
76hlex 30889 . . . . . . 7 ℋ ∈ V
8 nnex 12141 . . . . . . 7 ℕ ∈ V
97, 8elmap 8804 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
109anbi1i 624 . . . . 5 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
11 df-br 5096 . . . . . . 7 (𝑓(⇝𝑡𝐽)𝑥 ↔ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))
12 h2hl.5 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 h2hl.2 . . . . . . . . . 10 𝑈 ∈ NrmCVec
14 h2hl.4 . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
156, 14imsxmet 30683 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1613, 15mp1i 13 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
17 nnuz 12785 . . . . . . . . 9 ℕ = (ℤ‘1)
18 1zzd 12513 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
19 eqidd 2734 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
20 id 22 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
2112, 16, 17, 18, 19, 20lmmbrf 25199 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦)))
22 eluznn 12826 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 ffvelcdm 7023 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
24 h2hl.1 . . . . . . . . . . . . . . . . . 18 𝑈 = ⟨⟨ + , · ⟩, norm
2524, 13, 6, 14h2hmetdval 30969 . . . . . . . . . . . . . . . . 17 (((𝑓𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2623, 25sylan 580 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2726breq1d 5105 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2827an32s 652 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2922, 28sylan2 593 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3029anassrs 467 . . . . . . . . . . . 12 ((((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3130ralbidva 3155 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3231rexbidva 3156 . . . . . . . . . 10 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3332ralbidv 3157 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3433pm5.32da 579 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3521, 34bitrd 279 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3611, 35bitr3id 285 . . . . . 6 (𝑓:ℕ⟶ ℋ → (⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3736pm5.32i 574 . . . . 5 ((𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3810, 37bitr2i 276 . . . 4 ((𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
39 anass 468 . . . 4 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
40 opelres 5941 . . . . 5 (𝑥 ∈ V → (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))))
4140elv 3443 . . . 4 (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
4238, 39, 413bitr4i 303 . . 3 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
434, 5, 423bitri 297 . 2 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
442, 3, 43eqrelriiv 5736 1 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  wrex 3058  Vcvv 3438  cop 4583   class class class wbr 5095  {copab 5157  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  1c1 11017   < clt 11156  cn 12135  cuz 12742  +crp 12900  ∞Metcxmet 21286  MetOpencmopn 21291  𝑡clm 23151  NrmCVeccnv 30575  BaseSetcba 30577  IndMetcims 30582  chba 30910   + cva 30911   · csm 30912  normcno 30914   cmv 30916  𝑣 chli 30918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-inf 9337  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-xneg 13021  df-xadd 13022  df-xmul 13023  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153  df-topgen 17357  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22819  df-topon 22836  df-bases 22871  df-lm 23154  df-grpo 30484  df-gid 30485  df-ginv 30486  df-gdiv 30487  df-ablo 30536  df-vc 30550  df-nv 30583  df-va 30586  df-ba 30587  df-sm 30588  df-0v 30589  df-vs 30590  df-nmcv 30591  df-ims 30592  df-hvsub 30962  df-hlim 30963
This theorem is referenced by:  axhcompl-zf  30989  hlimadd  31184  hhlm  31190
  Copyright terms: Public domain W3C validator