HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Visualization version   GIF version

Theorem h2hlm 28684
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = (BaseSet‘𝑈)
h2hl.4 𝐷 = (IndMet‘𝑈)
h2hl.5 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
h2hlm 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))

Proof of Theorem h2hlm
Dummy variables 𝑥 𝑓 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 28676 . . 3 𝑣 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)}
21relopabi 5687 . 2 Rel ⇝𝑣
3 relres 5875 . 2 Rel ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
41eleq2i 2901 . . 3 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)})
5 opabidw 5403 . . 3 (⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
6 h2hl.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
76hlex 28602 . . . . . . 7 ℋ ∈ V
8 nnex 11632 . . . . . . 7 ℕ ∈ V
97, 8elmap 8424 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
109anbi1i 623 . . . . 5 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
11 df-br 5058 . . . . . . 7 (𝑓(⇝𝑡𝐽)𝑥 ↔ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))
12 h2hl.5 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 h2hl.2 . . . . . . . . . 10 𝑈 ∈ NrmCVec
14 h2hl.4 . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
156, 14imsxmet 28396 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1613, 15mp1i 13 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
17 nnuz 12269 . . . . . . . . 9 ℕ = (ℤ‘1)
18 1zzd 12001 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
19 eqidd 2819 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
20 id 22 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
2112, 16, 17, 18, 19, 20lmmbrf 23792 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦)))
22 eluznn 12306 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 ffvelrn 6841 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
24 h2hl.1 . . . . . . . . . . . . . . . . . 18 𝑈 = ⟨⟨ + , · ⟩, norm
2524, 13, 6, 14h2hmetdval 28682 . . . . . . . . . . . . . . . . 17 (((𝑓𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2623, 25sylan 580 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2726breq1d 5067 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2827an32s 648 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2922, 28sylan2 592 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3029anassrs 468 . . . . . . . . . . . 12 ((((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3130ralbidva 3193 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3231rexbidva 3293 . . . . . . . . . 10 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3332ralbidv 3194 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3433pm5.32da 579 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3521, 34bitrd 280 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3611, 35syl5bbr 286 . . . . . 6 (𝑓:ℕ⟶ ℋ → (⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3736pm5.32i 575 . . . . 5 ((𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3810, 37bitr2i 277 . . . 4 ((𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
39 anass 469 . . . 4 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
40 opelres 5852 . . . . 5 (𝑥 ∈ V → (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))))
4140elv 3497 . . . 4 (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
4238, 39, 413bitr4i 304 . . 3 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
434, 5, 423bitri 298 . 2 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
442, 3, 43eqrelriiv 5656 1 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  cop 4563   class class class wbr 5057  {copab 5119  cres 5550  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  1c1 10526   < clt 10663  cn 11626  cuz 12231  +crp 12377  ∞Metcxmet 20458  MetOpencmopn 20463  𝑡clm 21762  NrmCVeccnv 28288  BaseSetcba 28290  IndMetcims 28295  chba 28623   + cva 28624   · csm 28625  normcno 28627   cmv 28629  𝑣 chli 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-topgen 16705  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-top 21430  df-topon 21447  df-bases 21482  df-lm 21765  df-grpo 28197  df-gid 28198  df-ginv 28199  df-gdiv 28200  df-ablo 28249  df-vc 28263  df-nv 28296  df-va 28299  df-ba 28300  df-sm 28301  df-0v 28302  df-vs 28303  df-nmcv 28304  df-ims 28305  df-hvsub 28675  df-hlim 28676
This theorem is referenced by:  axhcompl-zf  28702  hlimadd  28897  hhlm  28903
  Copyright terms: Public domain W3C validator