HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hlm Structured version   Visualization version   GIF version

Theorem h2hlm 31012
Description: The limit sequences of Hilbert space. (Contributed by NM, 6-Jun-2008.) (Revised by Mario Carneiro, 13-May-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2hl.1 𝑈 = ⟨⟨ + , · ⟩, norm
h2hl.2 𝑈 ∈ NrmCVec
h2hl.3 ℋ = (BaseSet‘𝑈)
h2hl.4 𝐷 = (IndMet‘𝑈)
h2hl.5 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
h2hlm 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))

Proof of Theorem h2hlm
Dummy variables 𝑥 𝑓 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 31004 . . 3 𝑣 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)}
21relopabiv 5844 . 2 Rel ⇝𝑣
3 relres 6035 . 2 Rel ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
41eleq2i 2836 . . 3 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)})
5 opabidw 5543 . . 3 (⟨𝑓, 𝑥⟩ ∈ {⟨𝑓, 𝑥⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)} ↔ ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
6 h2hl.3 . . . . . . . 8 ℋ = (BaseSet‘𝑈)
76hlex 30930 . . . . . . 7 ℋ ∈ V
8 nnex 12299 . . . . . . 7 ℕ ∈ V
97, 8elmap 8929 . . . . . 6 (𝑓 ∈ ( ℋ ↑m ℕ) ↔ 𝑓:ℕ⟶ ℋ)
109anbi1i 623 . . . . 5 ((𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
11 df-br 5167 . . . . . . 7 (𝑓(⇝𝑡𝐽)𝑥 ↔ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))
12 h2hl.5 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
13 h2hl.2 . . . . . . . . . 10 𝑈 ∈ NrmCVec
14 h2hl.4 . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
156, 14imsxmet 30724 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘ ℋ))
1613, 15mp1i 13 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝐷 ∈ (∞Met‘ ℋ))
17 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
18 1zzd 12674 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 1 ∈ ℤ)
19 eqidd 2741 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) = (𝑓𝑘))
20 id 22 . . . . . . . . 9 (𝑓:ℕ⟶ ℋ → 𝑓:ℕ⟶ ℋ)
2112, 16, 17, 18, 19, 20lmmbrf 25315 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦)))
22 eluznn 12983 . . . . . . . . . . . . . 14 ((𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
23 ffvelcdm 7115 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
24 h2hl.1 . . . . . . . . . . . . . . . . . 18 𝑈 = ⟨⟨ + , · ⟩, norm
2524, 13, 6, 14h2hmetdval 31010 . . . . . . . . . . . . . . . . 17 (((𝑓𝑘) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2623, 25sylan 579 . . . . . . . . . . . . . . . 16 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → ((𝑓𝑘)𝐷𝑥) = (norm‘((𝑓𝑘) − 𝑥)))
2726breq1d 5176 . . . . . . . . . . . . . . 15 (((𝑓:ℕ⟶ ℋ ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℋ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2827an32s 651 . . . . . . . . . . . . . 14 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑘 ∈ ℕ) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
2922, 28sylan2 592 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑗))) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3029anassrs 467 . . . . . . . . . . . 12 ((((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ (norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3130ralbidva 3182 . . . . . . . . . . 11 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3231rexbidva 3183 . . . . . . . . . 10 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3332ralbidv 3184 . . . . . . . . 9 ((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦 ↔ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦))
3433pm5.32da 578 . . . . . . . 8 (𝑓:ℕ⟶ ℋ → ((𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘)𝐷𝑥) < 𝑦) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3521, 34bitrd 279 . . . . . . 7 (𝑓:ℕ⟶ ℋ → (𝑓(⇝𝑡𝐽)𝑥 ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3611, 35bitr3id 285 . . . . . 6 (𝑓:ℕ⟶ ℋ → (⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽) ↔ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3736pm5.32i 574 . . . . 5 ((𝑓:ℕ⟶ ℋ ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
3810, 37bitr2i 276 . . . 4 ((𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
39 anass 468 . . . 4 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ (𝑓:ℕ⟶ ℋ ∧ (𝑥 ∈ ℋ ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦)))
40 opelres 6015 . . . . 5 (𝑥 ∈ V → (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽))))
4140elv 3493 . . . 4 (⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)) ↔ (𝑓 ∈ ( ℋ ↑m ℕ) ∧ ⟨𝑓, 𝑥⟩ ∈ (⇝𝑡𝐽)))
4238, 39, 413bitr4i 303 . . 3 (((𝑓:ℕ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ ∀𝑦 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(norm‘((𝑓𝑘) − 𝑥)) < 𝑦) ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
434, 5, 423bitri 297 . 2 (⟨𝑓, 𝑥⟩ ∈ ⇝𝑣 ↔ ⟨𝑓, 𝑥⟩ ∈ ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ)))
442, 3, 43eqrelriiv 5814 1 𝑣 = ((⇝𝑡𝐽) ↾ ( ℋ ↑m ℕ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cop 4654   class class class wbr 5166  {copab 5228  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  1c1 11185   < clt 11324  cn 12293  cuz 12903  +crp 13057  ∞Metcxmet 21372  MetOpencmopn 21377  𝑡clm 23255  NrmCVeccnv 30616  BaseSetcba 30618  IndMetcims 30623  chba 30951   + cva 30952   · csm 30953  normcno 30955   cmv 30957  𝑣 chli 30959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-lm 23258  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-hvsub 31003  df-hlim 31004
This theorem is referenced by:  axhcompl-zf  31030  hlimadd  31225  hhlm  31231
  Copyright terms: Public domain W3C validator