| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hlimi | Structured version Visualization version GIF version | ||
| Description: Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlim.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| hlimi | ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hlim 30953 | . . . 4 ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | |
| 2 | 1 | relopabiv 5799 | . . 3 ⊢ Rel ⇝𝑣 |
| 3 | 2 | brrelex1i 5710 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ V) |
| 4 | nnex 12246 | . . . 4 ⊢ ℕ ∈ V | |
| 5 | fex 7218 | . . . 4 ⊢ ((𝐹:ℕ⟶ ℋ ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
| 6 | 4, 5 | mpan2 691 | . . 3 ⊢ (𝐹:ℕ⟶ ℋ → 𝐹 ∈ V) |
| 7 | 6 | ad2antrr 726 | . 2 ⊢ (((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥) → 𝐹 ∈ V) |
| 8 | hlim.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 9 | feq1 6686 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶ ℋ ↔ 𝐹:ℕ⟶ ℋ)) | |
| 10 | eleq1 2822 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ)) | |
| 11 | 9, 10 | bi2anan9 638 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ↔ (𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ))) |
| 12 | fveq1 6875 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | |
| 13 | oveq12 7414 | . . . . . . . . . 10 ⊢ (((𝑓‘𝑧) = (𝐹‘𝑧) ∧ 𝑤 = 𝐴) → ((𝑓‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) | |
| 14 | 12, 13 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((𝑓‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) |
| 15 | 14 | fveq2d 6880 | . . . . . . . 8 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) = (normℎ‘((𝐹‘𝑧) −ℎ 𝐴))) |
| 16 | 15 | breq1d 5129 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ (normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 17 | 16 | rexralbidv 3207 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 18 | 17 | ralbidv 3163 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| 19 | 11, 18 | anbi12d 632 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥) ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
| 20 | 19, 1 | brabga 5509 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
| 21 | 8, 20 | mpan2 691 | . 2 ⊢ (𝐹 ∈ V → (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
| 22 | 3, 7, 21 | pm5.21nii 378 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 Vcvv 3459 class class class wbr 5119 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 < clt 11269 ℕcn 12240 ℤ≥cuz 12852 ℝ+crp 13008 ℋchba 30900 normℎcno 30904 −ℎ cmv 30906 ⇝𝑣 chli 30908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-hlim 30953 |
| This theorem is referenced by: hlimseqi 31170 hlimveci 31171 hlimconvi 31172 hlim2 31173 |
| Copyright terms: Public domain | W3C validator |