HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimi Structured version   Visualization version   GIF version

Theorem hlimi 31169
Description: Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1 𝐴 ∈ V
Assertion
Ref Expression
hlimi (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlimi
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 30953 . . . 4 𝑣 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥)}
21relopabiv 5799 . . 3 Rel ⇝𝑣
32brrelex1i 5710 . 2 (𝐹𝑣 𝐴𝐹 ∈ V)
4 nnex 12246 . . . 4 ℕ ∈ V
5 fex 7218 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ ℕ ∈ V) → 𝐹 ∈ V)
64, 5mpan2 691 . . 3 (𝐹:ℕ⟶ ℋ → 𝐹 ∈ V)
76ad2antrr 726 . 2 (((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥) → 𝐹 ∈ V)
8 hlim.1 . . 3 𝐴 ∈ V
9 feq1 6686 . . . . . 6 (𝑓 = 𝐹 → (𝑓:ℕ⟶ ℋ ↔ 𝐹:ℕ⟶ ℋ))
10 eleq1 2822 . . . . . 6 (𝑤 = 𝐴 → (𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ))
119, 10bi2anan9 638 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝐴) → ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ↔ (𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ)))
12 fveq1 6875 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
13 oveq12 7414 . . . . . . . . . 10 (((𝑓𝑧) = (𝐹𝑧) ∧ 𝑤 = 𝐴) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
1412, 13sylan 580 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝐴) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
1514fveq2d 6880 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐴) → (norm‘((𝑓𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
1615breq1d 5129 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝐴) → ((norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1716rexralbidv 3207 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝐴) → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1817ralbidv 3163 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝐴) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1911, 18anbi12d 632 . . . 4 ((𝑓 = 𝐹𝑤 = 𝐴) → (((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
2019, 1brabga 5509 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ V) → (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
218, 20mpan2 691 . 2 (𝐹 ∈ V → (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
223, 7, 21pm5.21nii 378 1 (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405   < clt 11269  cn 12240  cuz 12852  +crp 13008  chba 30900  normcno 30904   cmv 30906  𝑣 chli 30908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-hlim 30953
This theorem is referenced by:  hlimseqi  31170  hlimveci  31171  hlimconvi  31172  hlim2  31173
  Copyright terms: Public domain W3C validator