HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hlimi Structured version   Visualization version   GIF version

Theorem hlimi 30441
Description: Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Hypothesis
Ref Expression
hlim.1 𝐴 ∈ V
Assertion
Ref Expression
hlimi (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐴,𝑦,𝑧

Proof of Theorem hlimi
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hlim 30225 . . . 4 𝑣 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥)}
21relopabiv 5821 . . 3 Rel ⇝𝑣
32brrelex1i 5733 . 2 (𝐹𝑣 𝐴𝐹 ∈ V)
4 nnex 12218 . . . 4 ℕ ∈ V
5 fex 7228 . . . 4 ((𝐹:ℕ⟶ ℋ ∧ ℕ ∈ V) → 𝐹 ∈ V)
64, 5mpan2 690 . . 3 (𝐹:ℕ⟶ ℋ → 𝐹 ∈ V)
76ad2antrr 725 . 2 (((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥) → 𝐹 ∈ V)
8 hlim.1 . . 3 𝐴 ∈ V
9 feq1 6699 . . . . . 6 (𝑓 = 𝐹 → (𝑓:ℕ⟶ ℋ ↔ 𝐹:ℕ⟶ ℋ))
10 eleq1 2822 . . . . . 6 (𝑤 = 𝐴 → (𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ))
119, 10bi2anan9 638 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝐴) → ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ↔ (𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ)))
12 fveq1 6891 . . . . . . . . . 10 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
13 oveq12 7418 . . . . . . . . . 10 (((𝑓𝑧) = (𝐹𝑧) ∧ 𝑤 = 𝐴) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
1412, 13sylan 581 . . . . . . . . 9 ((𝑓 = 𝐹𝑤 = 𝐴) → ((𝑓𝑧) − 𝑤) = ((𝐹𝑧) − 𝐴))
1514fveq2d 6896 . . . . . . . 8 ((𝑓 = 𝐹𝑤 = 𝐴) → (norm‘((𝑓𝑧) − 𝑤)) = (norm‘((𝐹𝑧) − 𝐴)))
1615breq1d 5159 . . . . . . 7 ((𝑓 = 𝐹𝑤 = 𝐴) → ((norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ (norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1716rexralbidv 3221 . . . . . 6 ((𝑓 = 𝐹𝑤 = 𝐴) → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1817ralbidv 3178 . . . . 5 ((𝑓 = 𝐹𝑤 = 𝐴) → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
1911, 18anbi12d 632 . . . 4 ((𝑓 = 𝐹𝑤 = 𝐴) → (((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥) ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
2019, 1brabga 5535 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ V) → (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
218, 20mpan2 690 . 2 (𝐹 ∈ V → (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥)))
223, 7, 21pm5.21nii 380 1 (𝐹𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑧) − 𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  Vcvv 3475   class class class wbr 5149  wf 6540  cfv 6544  (class class class)co 7409   < clt 11248  cn 12212  cuz 12822  +crp 12974  chba 30172  normcno 30176   cmv 30178  𝑣 chli 30180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-nn 12213  df-hlim 30225
This theorem is referenced by:  hlimseqi  30442  hlimveci  30443  hlimconvi  30444  hlim2  30445
  Copyright terms: Public domain W3C validator