![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hlimi | Structured version Visualization version GIF version |
Description: Express the predicate: The limit of vector sequence 𝐹 in a Hilbert space is 𝐴, i.e. 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑦 such that the norm of any later vector in the sequence minus the limit is less than 𝑥. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlim.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
hlimi | ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hlim 31001 | . . . 4 ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} | |
2 | 1 | relopabiv 5833 | . . 3 ⊢ Rel ⇝𝑣 |
3 | 2 | brrelex1i 5745 | . 2 ⊢ (𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ V) |
4 | nnex 12270 | . . . 4 ⊢ ℕ ∈ V | |
5 | fex 7246 | . . . 4 ⊢ ((𝐹:ℕ⟶ ℋ ∧ ℕ ∈ V) → 𝐹 ∈ V) | |
6 | 4, 5 | mpan2 691 | . . 3 ⊢ (𝐹:ℕ⟶ ℋ → 𝐹 ∈ V) |
7 | 6 | ad2antrr 726 | . 2 ⊢ (((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥) → 𝐹 ∈ V) |
8 | hlim.1 | . . 3 ⊢ 𝐴 ∈ V | |
9 | feq1 6717 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓:ℕ⟶ ℋ ↔ 𝐹:ℕ⟶ ℋ)) | |
10 | eleq1 2827 | . . . . . 6 ⊢ (𝑤 = 𝐴 → (𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ)) | |
11 | 9, 10 | bi2anan9 638 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ↔ (𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ))) |
12 | fveq1 6906 | . . . . . . . . . 10 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | |
13 | oveq12 7440 | . . . . . . . . . 10 ⊢ (((𝑓‘𝑧) = (𝐹‘𝑧) ∧ 𝑤 = 𝐴) → ((𝑓‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) | |
14 | 12, 13 | sylan 580 | . . . . . . . . 9 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((𝑓‘𝑧) −ℎ 𝑤) = ((𝐹‘𝑧) −ℎ 𝐴)) |
15 | 14 | fveq2d 6911 | . . . . . . . 8 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) = (normℎ‘((𝐹‘𝑧) −ℎ 𝐴))) |
16 | 15 | breq1d 5158 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → ((normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ (normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
17 | 16 | rexralbidv 3221 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
18 | 17 | ralbidv 3176 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
19 | 11, 18 | anbi12d 632 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑤 = 𝐴) → (((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥) ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
20 | 19, 1 | brabga 5544 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐴 ∈ V) → (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
21 | 8, 20 | mpan2 691 | . 2 ⊢ (𝐹 ∈ V → (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥))) |
22 | 3, 7, 21 | pm5.21nii 378 | 1 ⊢ (𝐹 ⇝𝑣 𝐴 ↔ ((𝐹:ℕ⟶ ℋ ∧ 𝐴 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑧) −ℎ 𝐴)) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 Vcvv 3478 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 < clt 11293 ℕcn 12264 ℤ≥cuz 12876 ℝ+crp 13032 ℋchba 30948 normℎcno 30952 −ℎ cmv 30954 ⇝𝑣 chli 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-hlim 31001 |
This theorem is referenced by: hlimseqi 31218 hlimveci 31219 hlimconvi 31220 hlim2 31221 |
Copyright terms: Public domain | W3C validator |