Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-if | Structured version Visualization version GIF version |
Description: Definition of the
conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4478 and iffalse 4481 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4530. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
df-if | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cif 4472 | . 2 class if(𝜑, 𝐴, 𝐵) |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1539 | . . . . . 6 class 𝑥 |
7 | 6, 2 | wcel 2105 | . . . . 5 wff 𝑥 ∈ 𝐴 |
8 | 7, 1 | wa 396 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 6, 3 | wcel 2105 | . . . . 5 wff 𝑥 ∈ 𝐵 |
10 | 1 | wn 3 | . . . . 5 wff ¬ 𝜑 |
11 | 9, 10 | wa 396 | . . . 4 wff (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) |
12 | 8, 11 | wo 844 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) |
13 | 12, 5 | cab 2713 | . 2 class {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
14 | 4, 13 | wceq 1540 | 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
Colors of variables: wff setvar class |
This definition is referenced by: dfif2 4474 dfif6 4475 iffalse 4481 rabsnifsb 4669 bj-df-ifc 34852 |
Copyright terms: Public domain | W3C validator |