MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-if Structured version   Visualization version   GIF version

Definition df-if 4440
Description: Definition of the conditional operator for classes. The expression if(𝜑, 𝐴, 𝐵) is read "if 𝜑 then 𝐴 else 𝐵". See iftrue 4445 and iffalse 4448 for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise".

An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4497. (Contributed by NM, 15-May-1999.)

Assertion
Ref Expression
df-if if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-if
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cif 4439 . 2 class if(𝜑, 𝐴, 𝐵)
5 vx . . . . . . 7 setvar 𝑥
65cv 1542 . . . . . 6 class 𝑥
76, 2wcel 2110 . . . . 5 wff 𝑥𝐴
87, 1wa 399 . . . 4 wff (𝑥𝐴𝜑)
96, 3wcel 2110 . . . . 5 wff 𝑥𝐵
101wn 3 . . . . 5 wff ¬ 𝜑
119, 10wa 399 . . . 4 wff (𝑥𝐵 ∧ ¬ 𝜑)
128, 11wo 847 . . 3 wff ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))
1312, 5cab 2714 . 2 class {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
144, 13wceq 1543 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Colors of variables: wff setvar class
This definition is referenced by:  dfif2  4441  dfif6  4442  iffalse  4448  rabsnifsb  4638  bj-df-ifc  34498
  Copyright terms: Public domain W3C validator