![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-if | Structured version Visualization version GIF version |
Description: Definition of the
conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4539 and iffalse 4542 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4591. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
df-if | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | cif 4533 | . 2 class if(𝜑, 𝐴, 𝐵) |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1533 | . . . . . 6 class 𝑥 |
7 | 6, 2 | wcel 2099 | . . . . 5 wff 𝑥 ∈ 𝐴 |
8 | 7, 1 | wa 394 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 6, 3 | wcel 2099 | . . . . 5 wff 𝑥 ∈ 𝐵 |
10 | 1 | wn 3 | . . . . 5 wff ¬ 𝜑 |
11 | 9, 10 | wa 394 | . . . 4 wff (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) |
12 | 8, 11 | wo 845 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) |
13 | 12, 5 | cab 2703 | . 2 class {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
14 | 4, 13 | wceq 1534 | 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
Colors of variables: wff setvar class |
This definition is referenced by: dfif2 4535 dfif6 4536 iffalse 4542 rabsnifsb 4731 bj-df-ifc 36284 |
Copyright terms: Public domain | W3C validator |