MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-if Structured version   Visualization version   GIF version

Definition df-if 4501
Description: Definition of the conditional operator for classes. The expression if(𝜑, 𝐴, 𝐵) is read "if 𝜑 then 𝐴 else 𝐵". See iftrue 4506 and iffalse 4509 for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise".

An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4559. (Contributed by NM, 15-May-1999.)

Assertion
Ref Expression
df-if if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-if
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cif 4500 . 2 class if(𝜑, 𝐴, 𝐵)
5 vx . . . . . . 7 setvar 𝑥
65cv 1539 . . . . . 6 class 𝑥
76, 2wcel 2108 . . . . 5 wff 𝑥𝐴
87, 1wa 395 . . . 4 wff (𝑥𝐴𝜑)
96, 3wcel 2108 . . . . 5 wff 𝑥𝐵
101wn 3 . . . . 5 wff ¬ 𝜑
119, 10wa 395 . . . 4 wff (𝑥𝐵 ∧ ¬ 𝜑)
128, 11wo 847 . . 3 wff ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))
1312, 5cab 2713 . 2 class {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
144, 13wceq 1540 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Colors of variables: wff setvar class
This definition is referenced by:  dfif2  4502  dfif6  4503  iffalse  4509  rabsnifsb  4698  bj-df-ifc  36544
  Copyright terms: Public domain W3C validator