| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-if | Structured version Visualization version GIF version | ||
| Description: Definition of the
conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4494 and iffalse 4497 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4547. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| df-if | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cif 4488 | . 2 class if(𝜑, 𝐴, 𝐵) |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 6, 2 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 8 | 7, 1 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 6, 3 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐵 |
| 10 | 1 | wn 3 | . . . . 5 wff ¬ 𝜑 |
| 11 | 9, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) |
| 12 | 8, 11 | wo 847 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) |
| 13 | 12, 5 | cab 2707 | . 2 class {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| 14 | 4, 13 | wceq 1540 | 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfif2 4490 dfif6 4491 iffalse 4497 rabsnifsb 4686 bj-df-ifc 36568 |
| Copyright terms: Public domain | W3C validator |