Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-if Structured version   Visualization version   GIF version

Definition df-if 4426
 Description: Definition of the conditional operator for classes. The expression if(𝜑, 𝐴, 𝐵) is read "if 𝜑 then 𝐴 else 𝐵". See iftrue 4431 and iffalse 4434 for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise". An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4481. (Contributed by NM, 15-May-1999.)
Assertion
Ref Expression
df-if if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-if
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cif 4425 . 2 class if(𝜑, 𝐴, 𝐵)
5 vx . . . . . . 7 setvar 𝑥
65cv 1537 . . . . . 6 class 𝑥
76, 2wcel 2111 . . . . 5 wff 𝑥𝐴
87, 1wa 399 . . . 4 wff (𝑥𝐴𝜑)
96, 3wcel 2111 . . . . 5 wff 𝑥𝐵
101wn 3 . . . . 5 wff ¬ 𝜑
119, 10wa 399 . . . 4 wff (𝑥𝐵 ∧ ¬ 𝜑)
128, 11wo 844 . . 3 wff ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))
1312, 5cab 2776 . 2 class {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
144, 13wceq 1538 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
 Colors of variables: wff setvar class This definition is referenced by:  dfif2  4427  dfif6  4428  iffalse  4434  rabsnifsb  4618  bj-df-ifc  34042
 Copyright terms: Public domain W3C validator