| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-if | Structured version Visualization version GIF version | ||
| Description: Definition of the
conditional operator for classes. The expression
if(𝜑,
𝐴, 𝐵) is read "if 𝜑 then
𝐴
else 𝐵". See
iftrue 4484 and iffalse 4487 for its values. In the mathematical
literature,
this operator is rarely defined formally but is implicit in informal
definitions such as "let f(x)=0 if x=0 and 1/x otherwise".
An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4537. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| df-if | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | cif 4478 | . 2 class if(𝜑, 𝐴, 𝐵) |
| 5 | vx | . . . . . . 7 setvar 𝑥 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 6, 2 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐴 |
| 8 | 7, 1 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 6, 3 | wcel 2109 | . . . . 5 wff 𝑥 ∈ 𝐵 |
| 10 | 1 | wn 3 | . . . . 5 wff ¬ 𝜑 |
| 11 | 9, 10 | wa 395 | . . . 4 wff (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) |
| 12 | 8, 11 | wo 847 | . . 3 wff ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) |
| 13 | 12, 5 | cab 2707 | . 2 class {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| 14 | 4, 13 | wceq 1540 | 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfif2 4480 dfif6 4481 iffalse 4487 rabsnifsb 4676 bj-df-ifc 36553 |
| Copyright terms: Public domain | W3C validator |