MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-if Structured version   Visualization version   GIF version

Definition df-if 4534
Description: Definition of the conditional operator for classes. The expression if(𝜑, 𝐴, 𝐵) is read "if 𝜑 then 𝐴 else 𝐵". See iftrue 4539 and iffalse 4542 for its values. In the mathematical literature, this operator is rarely defined formally but is implicit in informal definitions such as "let f(x)=0 if x=0 and 1/x otherwise".

An important use for us is in conjunction with the weak deduction theorem, which is described in the next section, beginning at dedth 4591. (Contributed by NM, 15-May-1999.)

Assertion
Ref Expression
df-if if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Detailed syntax breakdown of Definition df-if
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3cif 4533 . 2 class if(𝜑, 𝐴, 𝐵)
5 vx . . . . . . 7 setvar 𝑥
65cv 1533 . . . . . 6 class 𝑥
76, 2wcel 2099 . . . . 5 wff 𝑥𝐴
87, 1wa 394 . . . 4 wff (𝑥𝐴𝜑)
96, 3wcel 2099 . . . . 5 wff 𝑥𝐵
101wn 3 . . . . 5 wff ¬ 𝜑
119, 10wa 394 . . . 4 wff (𝑥𝐵 ∧ ¬ 𝜑)
128, 11wo 845 . . 3 wff ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))
1312, 5cab 2703 . 2 class {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
144, 13wceq 1534 1 wff if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
Colors of variables: wff setvar class
This definition is referenced by:  dfif2  4535  dfif6  4536  iffalse  4542  rabsnifsb  4731  bj-df-ifc  36284
  Copyright terms: Public domain W3C validator