Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iffalse | Structured version Visualization version GIF version |
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
iffalse | ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 4465 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | dedlemb 1043 | . . 3 ⊢ (¬ 𝜑 → (𝑥 ∈ 𝐵 ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)))) | |
3 | 2 | abbi2dv 2878 | . 2 ⊢ (¬ 𝜑 → 𝐵 = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))}) |
4 | 1, 3 | eqtr4id 2798 | 1 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
Copyright terms: Public domain | W3C validator |