Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4530. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4536 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4536. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4471 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 257 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-if 4466 |
This theorem is referenced by: dedth2h 4524 dedth3h 4525 orduninsuc 7684 oeoe 8415 limensuc 8923 axcc4dom 10198 inar1 10532 supsr 10869 renegcl 11284 peano5uzti 12410 uzenom 13682 seqfn 13731 seq1 13732 seqp1 13734 hashxp 14147 smadiadetr 21822 imsmet 29049 smcn 29056 nmlno0i 29152 nmblolbi 29158 blocn 29165 dipdir 29200 dipass 29203 siilem2 29210 htth 29276 normlem6 29473 normlem7tALT 29477 normsq 29492 hhssablo 29621 hhssnvt 29623 hhsssh 29627 shintcl 29688 chintcl 29690 pjhth 29751 ococ 29764 chm0 29849 chne0 29852 chocin 29853 chj0 29855 chjo 29873 h1de2ci 29914 spansn 29917 elspansn 29924 pjch1 30028 pjinormi 30045 pjige0 30049 hoaddid1 30149 hodid 30150 nmlnop0 30356 lnopunilem2 30369 elunop2 30371 lnophm 30377 nmbdoplb 30383 nmcopex 30387 nmcoplb 30388 lnopcon 30393 lnfn0 30405 lnfnmul 30406 nmbdfnlb 30408 nmcfnex 30411 nmcfnlb 30412 lnfncon 30414 riesz4 30422 riesz1 30423 cnlnadjeu 30436 pjhmop 30508 hmopidmch 30511 hmopidmpj 30512 pjss2coi 30522 pjssmi 30523 pjssge0i 30524 pjdifnormi 30525 pjidmco 30539 mdslmd1lem3 30685 mdslmd1lem4 30686 csmdsymi 30692 hatomic 30718 atord 30746 atcvat2 30747 chirred 30753 bnj941 32748 bnj944 32914 sqdivzi 33689 onsucconn 34623 onsucsuccmp 34629 limsucncmp 34631 dedths 36972 dedths2 36975 bnd2d 46356 |
Copyright terms: Public domain | W3C validator |