Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4524. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4530 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4530. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4465 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 257 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-if 4460 |
This theorem is referenced by: dedth2h 4518 dedth3h 4519 orduninsuc 7690 oeoe 8430 limensuc 8941 axcc4dom 10197 inar1 10531 supsr 10868 renegcl 11284 peano5uzti 12410 uzenom 13684 seqfn 13733 seq1 13734 seqp1 13736 hashxp 14149 smadiadetr 21824 imsmet 29053 smcn 29060 nmlno0i 29156 nmblolbi 29162 blocn 29169 dipdir 29204 dipass 29207 siilem2 29214 htth 29280 normlem6 29477 normlem7tALT 29481 normsq 29496 hhssablo 29625 hhssnvt 29627 hhsssh 29631 shintcl 29692 chintcl 29694 pjhth 29755 ococ 29768 chm0 29853 chne0 29856 chocin 29857 chj0 29859 chjo 29877 h1de2ci 29918 spansn 29921 elspansn 29928 pjch1 30032 pjinormi 30049 pjige0 30053 hoaddid1 30153 hodid 30154 nmlnop0 30360 lnopunilem2 30373 elunop2 30375 lnophm 30381 nmbdoplb 30387 nmcopex 30391 nmcoplb 30392 lnopcon 30397 lnfn0 30409 lnfnmul 30410 nmbdfnlb 30412 nmcfnex 30415 nmcfnlb 30416 lnfncon 30418 riesz4 30426 riesz1 30427 cnlnadjeu 30440 pjhmop 30512 hmopidmch 30515 hmopidmpj 30516 pjss2coi 30526 pjssmi 30527 pjssge0i 30528 pjdifnormi 30529 pjidmco 30543 mdslmd1lem3 30689 mdslmd1lem4 30690 csmdsymi 30696 hatomic 30722 atord 30750 atcvat2 30751 chirred 30757 bnj941 32752 bnj944 32918 sqdivzi 33693 onsucconn 34627 onsucsuccmp 34633 limsucncmp 34635 dedths 36976 dedths2 36979 bnd2d 46387 |
Copyright terms: Public domain | W3C validator |