| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4538. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4544 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4544. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4478 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2737 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ifcif 4472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-if 4473 |
| This theorem is referenced by: dedth2h 4532 dedth3h 4533 orduninsuc 7773 oeoe 8514 limensuc 9067 axcc4dom 10332 inar1 10666 supsr 11003 renegcl 11424 peano5uzti 12563 uzenom 13871 seqfn 13920 seq1 13921 seqp1 13923 hashxp 14341 smadiadetr 22590 imsmet 30671 smcn 30678 nmlno0i 30774 nmblolbi 30780 blocn 30787 dipdir 30822 dipass 30825 siilem2 30832 htth 30898 normlem6 31095 normlem7tALT 31099 normsq 31114 hhssablo 31243 hhssnvt 31245 hhsssh 31249 shintcl 31310 chintcl 31312 pjhth 31373 ococ 31386 chm0 31471 chne0 31474 chocin 31475 chj0 31477 chjo 31495 h1de2ci 31536 spansn 31539 elspansn 31546 pjch1 31650 pjinormi 31667 pjige0 31671 hoaddrid 31771 hodid 31772 nmlnop0 31978 lnopunilem2 31991 elunop2 31993 lnophm 31999 nmbdoplb 32005 nmcopex 32009 nmcoplb 32010 lnopcon 32015 lnfn0 32027 lnfnmul 32028 nmbdfnlb 32030 nmcfnex 32033 nmcfnlb 32034 lnfncon 32036 riesz4 32044 riesz1 32045 cnlnadjeu 32058 pjhmop 32130 hmopidmch 32133 hmopidmpj 32134 pjss2coi 32144 pjssmi 32145 pjssge0i 32146 pjdifnormi 32147 pjidmco 32161 mdslmd1lem3 32307 mdslmd1lem4 32308 csmdsymi 32314 hatomic 32340 atord 32368 atcvat2 32369 chirred 32375 bnj941 34784 bnj944 34950 sqdivzi 35772 onsucconn 36480 onsucsuccmp 36486 limsucncmp 36488 dedths 39009 dedths2 39012 bnd2d 49721 |
| Copyright terms: Public domain | W3C validator |