![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4596. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4602 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4602. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4537 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2741 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-if 4532 |
This theorem is referenced by: dedth2h 4590 dedth3h 4591 orduninsuc 7864 oeoe 8636 limensuc 9193 axcc4dom 10479 inar1 10813 supsr 11150 renegcl 11570 peano5uzti 12706 uzenom 14002 seqfn 14051 seq1 14052 seqp1 14054 hashxp 14470 smadiadetr 22697 imsmet 30720 smcn 30727 nmlno0i 30823 nmblolbi 30829 blocn 30836 dipdir 30871 dipass 30874 siilem2 30881 htth 30947 normlem6 31144 normlem7tALT 31148 normsq 31163 hhssablo 31292 hhssnvt 31294 hhsssh 31298 shintcl 31359 chintcl 31361 pjhth 31422 ococ 31435 chm0 31520 chne0 31523 chocin 31524 chj0 31526 chjo 31544 h1de2ci 31585 spansn 31588 elspansn 31595 pjch1 31699 pjinormi 31716 pjige0 31720 hoaddrid 31820 hodid 31821 nmlnop0 32027 lnopunilem2 32040 elunop2 32042 lnophm 32048 nmbdoplb 32054 nmcopex 32058 nmcoplb 32059 lnopcon 32064 lnfn0 32076 lnfnmul 32077 nmbdfnlb 32079 nmcfnex 32082 nmcfnlb 32083 lnfncon 32085 riesz4 32093 riesz1 32094 cnlnadjeu 32107 pjhmop 32179 hmopidmch 32182 hmopidmpj 32183 pjss2coi 32193 pjssmi 32194 pjssge0i 32195 pjdifnormi 32196 pjidmco 32210 mdslmd1lem3 32356 mdslmd1lem4 32357 csmdsymi 32363 hatomic 32389 atord 32417 atcvat2 32418 chirred 32424 bnj941 34765 bnj944 34931 sqdivzi 35708 onsucconn 36421 onsucsuccmp 36427 limsucncmp 36429 dedths 38944 dedths2 38947 bnd2d 48912 |
Copyright terms: Public domain | W3C validator |