![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4613. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4619 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4619. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4554 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2746 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-if 4549 |
This theorem is referenced by: dedth2h 4607 dedth3h 4608 orduninsuc 7880 oeoe 8655 limensuc 9220 axcc4dom 10510 inar1 10844 supsr 11181 renegcl 11599 peano5uzti 12733 uzenom 14015 seqfn 14064 seq1 14065 seqp1 14067 hashxp 14483 smadiadetr 22702 imsmet 30723 smcn 30730 nmlno0i 30826 nmblolbi 30832 blocn 30839 dipdir 30874 dipass 30877 siilem2 30884 htth 30950 normlem6 31147 normlem7tALT 31151 normsq 31166 hhssablo 31295 hhssnvt 31297 hhsssh 31301 shintcl 31362 chintcl 31364 pjhth 31425 ococ 31438 chm0 31523 chne0 31526 chocin 31527 chj0 31529 chjo 31547 h1de2ci 31588 spansn 31591 elspansn 31598 pjch1 31702 pjinormi 31719 pjige0 31723 hoaddrid 31823 hodid 31824 nmlnop0 32030 lnopunilem2 32043 elunop2 32045 lnophm 32051 nmbdoplb 32057 nmcopex 32061 nmcoplb 32062 lnopcon 32067 lnfn0 32079 lnfnmul 32080 nmbdfnlb 32082 nmcfnex 32085 nmcfnlb 32086 lnfncon 32088 riesz4 32096 riesz1 32097 cnlnadjeu 32110 pjhmop 32182 hmopidmch 32185 hmopidmpj 32186 pjss2coi 32196 pjssmi 32197 pjssge0i 32198 pjdifnormi 32199 pjidmco 32213 mdslmd1lem3 32359 mdslmd1lem4 32360 csmdsymi 32366 hatomic 32392 atord 32420 atcvat2 32421 chirred 32427 bnj941 34748 bnj944 34914 sqdivzi 35690 onsucconn 36404 onsucsuccmp 36410 limsucncmp 36412 dedths 38918 dedths2 38921 bnd2d 48773 |
Copyright terms: Public domain | W3C validator |