| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4550. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4556 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4556. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4490 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 |
| This theorem is referenced by: dedth2h 4544 dedth3h 4545 orduninsuc 7799 oeoe 8540 limensuc 9095 axcc4dom 10370 inar1 10704 supsr 11041 renegcl 11461 peano5uzti 12600 uzenom 13905 seqfn 13954 seq1 13955 seqp1 13957 hashxp 14375 smadiadetr 22595 imsmet 30670 smcn 30677 nmlno0i 30773 nmblolbi 30779 blocn 30786 dipdir 30821 dipass 30824 siilem2 30831 htth 30897 normlem6 31094 normlem7tALT 31098 normsq 31113 hhssablo 31242 hhssnvt 31244 hhsssh 31248 shintcl 31309 chintcl 31311 pjhth 31372 ococ 31385 chm0 31470 chne0 31473 chocin 31474 chj0 31476 chjo 31494 h1de2ci 31535 spansn 31538 elspansn 31545 pjch1 31649 pjinormi 31666 pjige0 31670 hoaddrid 31770 hodid 31771 nmlnop0 31977 lnopunilem2 31990 elunop2 31992 lnophm 31998 nmbdoplb 32004 nmcopex 32008 nmcoplb 32009 lnopcon 32014 lnfn0 32026 lnfnmul 32027 nmbdfnlb 32029 nmcfnex 32032 nmcfnlb 32033 lnfncon 32035 riesz4 32043 riesz1 32044 cnlnadjeu 32057 pjhmop 32129 hmopidmch 32132 hmopidmpj 32133 pjss2coi 32143 pjssmi 32144 pjssge0i 32145 pjdifnormi 32146 pjidmco 32160 mdslmd1lem3 32306 mdslmd1lem4 32307 csmdsymi 32313 hatomic 32339 atord 32367 atcvat2 32368 chirred 32374 bnj941 34755 bnj944 34921 sqdivzi 35708 onsucconn 36419 onsucsuccmp 36425 limsucncmp 36427 dedths 38948 dedths2 38951 bnd2d 49663 |
| Copyright terms: Public domain | W3C validator |