| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4557. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4563 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4563. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4497 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2736 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: dedth2h 4551 dedth3h 4552 orduninsuc 7822 oeoe 8566 limensuc 9124 axcc4dom 10401 inar1 10735 supsr 11072 renegcl 11492 peano5uzti 12631 uzenom 13936 seqfn 13985 seq1 13986 seqp1 13988 hashxp 14406 smadiadetr 22569 imsmet 30627 smcn 30634 nmlno0i 30730 nmblolbi 30736 blocn 30743 dipdir 30778 dipass 30781 siilem2 30788 htth 30854 normlem6 31051 normlem7tALT 31055 normsq 31070 hhssablo 31199 hhssnvt 31201 hhsssh 31205 shintcl 31266 chintcl 31268 pjhth 31329 ococ 31342 chm0 31427 chne0 31430 chocin 31431 chj0 31433 chjo 31451 h1de2ci 31492 spansn 31495 elspansn 31502 pjch1 31606 pjinormi 31623 pjige0 31627 hoaddrid 31727 hodid 31728 nmlnop0 31934 lnopunilem2 31947 elunop2 31949 lnophm 31955 nmbdoplb 31961 nmcopex 31965 nmcoplb 31966 lnopcon 31971 lnfn0 31983 lnfnmul 31984 nmbdfnlb 31986 nmcfnex 31989 nmcfnlb 31990 lnfncon 31992 riesz4 32000 riesz1 32001 cnlnadjeu 32014 pjhmop 32086 hmopidmch 32089 hmopidmpj 32090 pjss2coi 32100 pjssmi 32101 pjssge0i 32102 pjdifnormi 32103 pjidmco 32117 mdslmd1lem3 32263 mdslmd1lem4 32264 csmdsymi 32270 hatomic 32296 atord 32324 atcvat2 32325 chirred 32331 bnj941 34769 bnj944 34935 sqdivzi 35722 onsucconn 36433 onsucsuccmp 36439 limsucncmp 36441 dedths 38962 dedths2 38965 bnd2d 49674 |
| Copyright terms: Public domain | W3C validator |