Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4521. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4527 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4527. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4462 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2744 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 257 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: dedth2h 4515 dedth3h 4516 orduninsuc 7665 oeoe 8392 limensuc 8890 axcc4dom 10128 inar1 10462 supsr 10799 renegcl 11214 peano5uzti 12340 uzenom 13612 seqfn 13661 seq1 13662 seqp1 13664 hashxp 14077 smadiadetr 21732 imsmet 28954 smcn 28961 nmlno0i 29057 nmblolbi 29063 blocn 29070 dipdir 29105 dipass 29108 siilem2 29115 htth 29181 normlem6 29378 normlem7tALT 29382 normsq 29397 hhssablo 29526 hhssnvt 29528 hhsssh 29532 shintcl 29593 chintcl 29595 pjhth 29656 ococ 29669 chm0 29754 chne0 29757 chocin 29758 chj0 29760 chjo 29778 h1de2ci 29819 spansn 29822 elspansn 29829 pjch1 29933 pjinormi 29950 pjige0 29954 hoaddid1 30054 hodid 30055 nmlnop0 30261 lnopunilem2 30274 elunop2 30276 lnophm 30282 nmbdoplb 30288 nmcopex 30292 nmcoplb 30293 lnopcon 30298 lnfn0 30310 lnfnmul 30311 nmbdfnlb 30313 nmcfnex 30316 nmcfnlb 30317 lnfncon 30319 riesz4 30327 riesz1 30328 cnlnadjeu 30341 pjhmop 30413 hmopidmch 30416 hmopidmpj 30417 pjss2coi 30427 pjssmi 30428 pjssge0i 30429 pjdifnormi 30430 pjidmco 30444 mdslmd1lem3 30590 mdslmd1lem4 30591 csmdsymi 30597 hatomic 30623 atord 30651 atcvat2 30652 chirred 30658 bnj941 32652 bnj944 32818 sqdivzi 33599 onsucconn 34554 onsucsuccmp 34560 limsucncmp 34562 dedths 36903 dedths2 36906 bnd2d 46273 |
Copyright terms: Public domain | W3C validator |