| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4566. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4572 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4572. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4506 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2741 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: dedth2h 4560 dedth3h 4561 orduninsuc 7838 oeoe 8611 limensuc 9168 axcc4dom 10455 inar1 10789 supsr 11126 renegcl 11546 peano5uzti 12683 uzenom 13982 seqfn 14031 seq1 14032 seqp1 14034 hashxp 14452 smadiadetr 22613 imsmet 30672 smcn 30679 nmlno0i 30775 nmblolbi 30781 blocn 30788 dipdir 30823 dipass 30826 siilem2 30833 htth 30899 normlem6 31096 normlem7tALT 31100 normsq 31115 hhssablo 31244 hhssnvt 31246 hhsssh 31250 shintcl 31311 chintcl 31313 pjhth 31374 ococ 31387 chm0 31472 chne0 31475 chocin 31476 chj0 31478 chjo 31496 h1de2ci 31537 spansn 31540 elspansn 31547 pjch1 31651 pjinormi 31668 pjige0 31672 hoaddrid 31772 hodid 31773 nmlnop0 31979 lnopunilem2 31992 elunop2 31994 lnophm 32000 nmbdoplb 32006 nmcopex 32010 nmcoplb 32011 lnopcon 32016 lnfn0 32028 lnfnmul 32029 nmbdfnlb 32031 nmcfnex 32034 nmcfnlb 32035 lnfncon 32037 riesz4 32045 riesz1 32046 cnlnadjeu 32059 pjhmop 32131 hmopidmch 32134 hmopidmpj 32135 pjss2coi 32145 pjssmi 32146 pjssge0i 32147 pjdifnormi 32148 pjidmco 32162 mdslmd1lem3 32308 mdslmd1lem4 32309 csmdsymi 32315 hatomic 32341 atord 32369 atcvat2 32370 chirred 32376 bnj941 34803 bnj944 34969 sqdivzi 35745 onsucconn 36456 onsucsuccmp 36462 limsucncmp 36464 dedths 38980 dedths2 38983 bnd2d 49545 |
| Copyright terms: Public domain | W3C validator |