| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4554. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4560 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4560. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4494 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4489 |
| This theorem is referenced by: dedth2h 4548 dedth3h 4549 orduninsuc 7819 oeoe 8563 limensuc 9118 axcc4dom 10394 inar1 10728 supsr 11065 renegcl 11485 peano5uzti 12624 uzenom 13929 seqfn 13978 seq1 13979 seqp1 13981 hashxp 14399 smadiadetr 22562 imsmet 30620 smcn 30627 nmlno0i 30723 nmblolbi 30729 blocn 30736 dipdir 30771 dipass 30774 siilem2 30781 htth 30847 normlem6 31044 normlem7tALT 31048 normsq 31063 hhssablo 31192 hhssnvt 31194 hhsssh 31198 shintcl 31259 chintcl 31261 pjhth 31322 ococ 31335 chm0 31420 chne0 31423 chocin 31424 chj0 31426 chjo 31444 h1de2ci 31485 spansn 31488 elspansn 31495 pjch1 31599 pjinormi 31616 pjige0 31620 hoaddrid 31720 hodid 31721 nmlnop0 31927 lnopunilem2 31940 elunop2 31942 lnophm 31948 nmbdoplb 31954 nmcopex 31958 nmcoplb 31959 lnopcon 31964 lnfn0 31976 lnfnmul 31977 nmbdfnlb 31979 nmcfnex 31982 nmcfnlb 31983 lnfncon 31985 riesz4 31993 riesz1 31994 cnlnadjeu 32007 pjhmop 32079 hmopidmch 32082 hmopidmpj 32083 pjss2coi 32093 pjssmi 32094 pjssge0i 32095 pjdifnormi 32096 pjidmco 32110 mdslmd1lem3 32256 mdslmd1lem4 32257 csmdsymi 32263 hatomic 32289 atord 32317 atcvat2 32318 chirred 32324 bnj941 34762 bnj944 34928 sqdivzi 35715 onsucconn 36426 onsucsuccmp 36432 limsucncmp 36434 dedths 38955 dedths2 38958 bnd2d 49670 |
| Copyright terms: Public domain | W3C validator |