| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4550. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4556 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4556. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4490 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4485 |
| This theorem is referenced by: dedth2h 4544 dedth3h 4545 orduninsuc 7799 oeoe 8540 limensuc 9095 axcc4dom 10370 inar1 10704 supsr 11041 renegcl 11461 peano5uzti 12600 uzenom 13905 seqfn 13954 seq1 13955 seqp1 13957 hashxp 14375 smadiadetr 22538 imsmet 30593 smcn 30600 nmlno0i 30696 nmblolbi 30702 blocn 30709 dipdir 30744 dipass 30747 siilem2 30754 htth 30820 normlem6 31017 normlem7tALT 31021 normsq 31036 hhssablo 31165 hhssnvt 31167 hhsssh 31171 shintcl 31232 chintcl 31234 pjhth 31295 ococ 31308 chm0 31393 chne0 31396 chocin 31397 chj0 31399 chjo 31417 h1de2ci 31458 spansn 31461 elspansn 31468 pjch1 31572 pjinormi 31589 pjige0 31593 hoaddrid 31693 hodid 31694 nmlnop0 31900 lnopunilem2 31913 elunop2 31915 lnophm 31921 nmbdoplb 31927 nmcopex 31931 nmcoplb 31932 lnopcon 31937 lnfn0 31949 lnfnmul 31950 nmbdfnlb 31952 nmcfnex 31955 nmcfnlb 31956 lnfncon 31958 riesz4 31966 riesz1 31967 cnlnadjeu 31980 pjhmop 32052 hmopidmch 32055 hmopidmpj 32056 pjss2coi 32066 pjssmi 32067 pjssge0i 32068 pjdifnormi 32069 pjidmco 32083 mdslmd1lem3 32229 mdslmd1lem4 32230 csmdsymi 32236 hatomic 32262 atord 32290 atcvat2 32291 chirred 32297 bnj941 34735 bnj944 34901 sqdivzi 35688 onsucconn 36399 onsucsuccmp 36405 limsucncmp 36407 dedths 38928 dedths2 38931 bnd2d 49643 |
| Copyright terms: Public domain | W3C validator |