| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4542. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4548 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4548. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4482 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2735 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-if 4477 |
| This theorem is referenced by: dedth2h 4536 dedth3h 4537 orduninsuc 7776 oeoe 8517 limensuc 9071 axcc4dom 10335 inar1 10669 supsr 11006 renegcl 11427 peano5uzti 12566 uzenom 13871 seqfn 13920 seq1 13921 seqp1 13923 hashxp 14341 smadiadetr 22560 imsmet 30635 smcn 30642 nmlno0i 30738 nmblolbi 30744 blocn 30751 dipdir 30786 dipass 30789 siilem2 30796 htth 30862 normlem6 31059 normlem7tALT 31063 normsq 31078 hhssablo 31207 hhssnvt 31209 hhsssh 31213 shintcl 31274 chintcl 31276 pjhth 31337 ococ 31350 chm0 31435 chne0 31438 chocin 31439 chj0 31441 chjo 31459 h1de2ci 31500 spansn 31503 elspansn 31510 pjch1 31614 pjinormi 31631 pjige0 31635 hoaddrid 31735 hodid 31736 nmlnop0 31942 lnopunilem2 31955 elunop2 31957 lnophm 31963 nmbdoplb 31969 nmcopex 31973 nmcoplb 31974 lnopcon 31979 lnfn0 31991 lnfnmul 31992 nmbdfnlb 31994 nmcfnex 31997 nmcfnlb 31998 lnfncon 32000 riesz4 32008 riesz1 32009 cnlnadjeu 32022 pjhmop 32094 hmopidmch 32097 hmopidmpj 32098 pjss2coi 32108 pjssmi 32109 pjssge0i 32110 pjdifnormi 32111 pjidmco 32125 mdslmd1lem3 32271 mdslmd1lem4 32272 csmdsymi 32278 hatomic 32304 atord 32332 atcvat2 32333 chirred 32339 bnj941 34739 bnj944 34905 sqdivzi 35701 onsucconn 36412 onsucsuccmp 36418 limsucncmp 36420 dedths 38941 dedths2 38944 bnd2d 49666 |
| Copyright terms: Public domain | W3C validator |