| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version | ||
| Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4566. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4572 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4572. (Contributed by NM, 15-May-1999.) |
| Ref | Expression |
|---|---|
| dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
| dedth.2 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| dedth | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth.2 | . 2 ⊢ 𝜒 | |
| 2 | iftrue 4506 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 2 | eqcomd 2741 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
| 4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: dedth2h 4560 dedth3h 4561 orduninsuc 7836 oeoe 8609 limensuc 9166 axcc4dom 10453 inar1 10787 supsr 11124 renegcl 11544 peano5uzti 12681 uzenom 13980 seqfn 14029 seq1 14030 seqp1 14032 hashxp 14450 smadiadetr 22611 imsmet 30618 smcn 30625 nmlno0i 30721 nmblolbi 30727 blocn 30734 dipdir 30769 dipass 30772 siilem2 30779 htth 30845 normlem6 31042 normlem7tALT 31046 normsq 31061 hhssablo 31190 hhssnvt 31192 hhsssh 31196 shintcl 31257 chintcl 31259 pjhth 31320 ococ 31333 chm0 31418 chne0 31421 chocin 31422 chj0 31424 chjo 31442 h1de2ci 31483 spansn 31486 elspansn 31493 pjch1 31597 pjinormi 31614 pjige0 31618 hoaddrid 31718 hodid 31719 nmlnop0 31925 lnopunilem2 31938 elunop2 31940 lnophm 31946 nmbdoplb 31952 nmcopex 31956 nmcoplb 31957 lnopcon 31962 lnfn0 31974 lnfnmul 31975 nmbdfnlb 31977 nmcfnex 31980 nmcfnlb 31981 lnfncon 31983 riesz4 31991 riesz1 31992 cnlnadjeu 32005 pjhmop 32077 hmopidmch 32080 hmopidmpj 32081 pjss2coi 32091 pjssmi 32092 pjssge0i 32093 pjdifnormi 32094 pjidmco 32108 mdslmd1lem3 32254 mdslmd1lem4 32255 csmdsymi 32261 hatomic 32287 atord 32315 atcvat2 32316 chirred 32322 bnj941 34749 bnj944 34915 sqdivzi 35691 onsucconn 36402 onsucsuccmp 36408 limsucncmp 36410 dedths 38926 dedths2 38929 bnd2d 49493 |
| Copyright terms: Public domain | W3C validator |