![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4592. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4598 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4598. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4533 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2738 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 257 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ifcif 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4528 |
This theorem is referenced by: dedth2h 4586 dedth3h 4587 orduninsuc 7828 oeoe 8595 limensuc 9150 axcc4dom 10432 inar1 10766 supsr 11103 renegcl 11519 peano5uzti 12648 uzenom 13925 seqfn 13974 seq1 13975 seqp1 13977 hashxp 14390 smadiadetr 22168 imsmet 29931 smcn 29938 nmlno0i 30034 nmblolbi 30040 blocn 30047 dipdir 30082 dipass 30085 siilem2 30092 htth 30158 normlem6 30355 normlem7tALT 30359 normsq 30374 hhssablo 30503 hhssnvt 30505 hhsssh 30509 shintcl 30570 chintcl 30572 pjhth 30633 ococ 30646 chm0 30731 chne0 30734 chocin 30735 chj0 30737 chjo 30755 h1de2ci 30796 spansn 30799 elspansn 30806 pjch1 30910 pjinormi 30927 pjige0 30931 hoaddrid 31031 hodid 31032 nmlnop0 31238 lnopunilem2 31251 elunop2 31253 lnophm 31259 nmbdoplb 31265 nmcopex 31269 nmcoplb 31270 lnopcon 31275 lnfn0 31287 lnfnmul 31288 nmbdfnlb 31290 nmcfnex 31293 nmcfnlb 31294 lnfncon 31296 riesz4 31304 riesz1 31305 cnlnadjeu 31318 pjhmop 31390 hmopidmch 31393 hmopidmpj 31394 pjss2coi 31404 pjssmi 31405 pjssge0i 31406 pjdifnormi 31407 pjidmco 31421 mdslmd1lem3 31567 mdslmd1lem4 31568 csmdsymi 31574 hatomic 31600 atord 31628 atcvat2 31629 chirred 31635 bnj941 33771 bnj944 33937 sqdivzi 34685 onsucconn 35311 onsucsuccmp 35317 limsucncmp 35319 dedths 37820 dedths2 37823 bnd2d 47679 |
Copyright terms: Public domain | W3C validator |