![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dedth | Structured version Visualization version GIF version |
Description: Weak deduction theorem that eliminates a hypothesis 𝜑, making it become an antecedent. We assume that a proof exists for 𝜑 when the class variable 𝐴 is replaced with a specific class 𝐵. The hypothesis 𝜒 should be assigned to the inference, and the inference hypothesis eliminated with elimhyp 4594. If the inference has other hypotheses with class variable 𝐴, these can be kept by assigning keephyp 4600 to them. For more information, see the Weak Deduction Theorem page mmdeduction.html 4600. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
dedth.1 | ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) |
dedth.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
dedth | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedth.2 | . 2 ⊢ 𝜒 | |
2 | iftrue 4535 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 2 | eqcomd 2739 | . . 3 ⊢ (𝜑 → 𝐴 = if(𝜑, 𝐴, 𝐵)) |
4 | dedth.1 | . . 3 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝜓 ↔ 𝜒)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
6 | 1, 5 | mpbiri 258 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-if 4530 |
This theorem is referenced by: dedth2h 4588 dedth3h 4589 orduninsuc 7832 oeoe 8599 limensuc 9154 axcc4dom 10436 inar1 10770 supsr 11107 renegcl 11523 peano5uzti 12652 uzenom 13929 seqfn 13978 seq1 13979 seqp1 13981 hashxp 14394 smadiadetr 22177 imsmet 29944 smcn 29951 nmlno0i 30047 nmblolbi 30053 blocn 30060 dipdir 30095 dipass 30098 siilem2 30105 htth 30171 normlem6 30368 normlem7tALT 30372 normsq 30387 hhssablo 30516 hhssnvt 30518 hhsssh 30522 shintcl 30583 chintcl 30585 pjhth 30646 ococ 30659 chm0 30744 chne0 30747 chocin 30748 chj0 30750 chjo 30768 h1de2ci 30809 spansn 30812 elspansn 30819 pjch1 30923 pjinormi 30940 pjige0 30944 hoaddrid 31044 hodid 31045 nmlnop0 31251 lnopunilem2 31264 elunop2 31266 lnophm 31272 nmbdoplb 31278 nmcopex 31282 nmcoplb 31283 lnopcon 31288 lnfn0 31300 lnfnmul 31301 nmbdfnlb 31303 nmcfnex 31306 nmcfnlb 31307 lnfncon 31309 riesz4 31317 riesz1 31318 cnlnadjeu 31331 pjhmop 31403 hmopidmch 31406 hmopidmpj 31407 pjss2coi 31417 pjssmi 31418 pjssge0i 31419 pjdifnormi 31420 pjidmco 31434 mdslmd1lem3 31580 mdslmd1lem4 31581 csmdsymi 31587 hatomic 31613 atord 31641 atcvat2 31642 chirred 31648 bnj941 33783 bnj944 33949 sqdivzi 34697 onsucconn 35323 onsucsuccmp 35329 limsucncmp 35331 dedths 37832 dedths2 37835 bnd2d 47726 |
Copyright terms: Public domain | W3C validator |