Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-df-ifc Structured version   Visualization version   GIF version

Theorem bj-df-ifc 34688
Description: Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab 2716. We reprove the current df-if 4457 from it in bj-dfif 34689. (Contributed by BJ, 20-Sep-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-df-ifc if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥𝐴, 𝑥𝐵)}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem bj-df-ifc
StepHypRef Expression
1 df-if 4457 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 ancom 460 . . . . 5 ((𝑥𝐴𝜑) ↔ (𝜑𝑥𝐴))
3 ancom 460 . . . . 5 ((𝑥𝐵 ∧ ¬ 𝜑) ↔ (¬ 𝜑𝑥𝐵))
42, 3orbi12i 911 . . . 4 (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵)))
5 df-ifp 1060 . . . 4 (if-(𝜑, 𝑥𝐴, 𝑥𝐵) ↔ ((𝜑𝑥𝐴) ∨ (¬ 𝜑𝑥𝐵)))
64, 5bitr4i 277 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ if-(𝜑, 𝑥𝐴, 𝑥𝐵))
76abbii 2809 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ if-(𝜑, 𝑥𝐴, 𝑥𝐵)}
81, 7eqtri 2766 1 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥𝐴, 𝑥𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 843  if-wif 1059   = wceq 1539  wcel 2108  {cab 2715  ifcif 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-if 4457
This theorem is referenced by:  bj-dfif  34689  bj-ififc  34690
  Copyright terms: Public domain W3C validator