Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif6 Structured version   Visualization version   GIF version

Theorem dfif6 4453
 Description: An alternate definition of the conditional operator df-if 4451 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
dfif6 if(𝜑, 𝐴, 𝐵) = ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfif6
StepHypRef Expression
1 unab 4255 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 df-rab 3142 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
3 df-rab 3142 . . 3 {𝑥𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)}
42, 3uneq12i 4123 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵 ∧ ¬ 𝜑)})
5 df-if 4451 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
61, 4, 53eqtr4ri 2858 1 if(𝜑, 𝐴, 𝐵) = ({𝑥𝐴𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115  {cab 2802  {crab 3137   ∪ cun 3917  ifcif 4450 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rab 3142  df-v 3482  df-un 3924  df-if 4451 This theorem is referenced by:  ifeq1  4454  ifeq2  4455  dfif3  4464
 Copyright terms: Public domain W3C validator