| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfif6 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the conditional operator df-if 4492 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| dfif6 | ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜑))) |
| 3 | eleq1w 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))) |
| 5 | 2, 4 | unabw 4273 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜑) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))} |
| 6 | df-rab 3409 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 7 | df-rab 3409 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)} | |
| 8 | 6, 7 | uneq12i 4132 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) |
| 9 | df-if 4492 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜑) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 10 | 5, 8, 9 | 3eqtr4ri 2764 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ∪ cun 3915 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-if 4492 |
| This theorem is referenced by: ifeq1 4495 ifeq2 4496 dfif3 4506 |
| Copyright terms: Public domain | W3C validator |