Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfif6 | Structured version Visualization version GIF version |
Description: An alternate definition of the conditional operator df-if 4466 as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
dfif6 | ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜑))) |
3 | eleq1w 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
4 | 3 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))) |
5 | 2, 4 | unabw 4237 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜑) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))} |
6 | df-rab 3306 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
7 | df-rab 3306 | . . 3 ⊢ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)} | |
8 | 6, 7 | uneq12i 4101 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)}) |
9 | df-if 4466 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑦 ∣ ((𝑦 ∈ 𝐴 ∧ 𝜑) ∨ (𝑦 ∈ 𝐵 ∧ ¬ 𝜑))} | |
10 | 5, 8, 9 | 3eqtr4ri 2775 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 {cab 2713 {crab 3303 ∪ cun 3890 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-un 3897 df-if 4466 |
This theorem is referenced by: ifeq1 4469 ifeq2 4470 dfif3 4479 |
Copyright terms: Public domain | W3C validator |