MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif2 Structured version   Visualization version   GIF version

Theorem dfif2 4530
Description: An alternate definition of the conditional operator df-if 4529 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
dfif2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐵𝜑) → (𝑥𝐴𝜑))}
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfif2
StepHypRef Expression
1 df-if 4529 . 2 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
2 df-or 845 . . . 4 (((𝑥𝐵 ∧ ¬ 𝜑) ∨ (𝑥𝐴𝜑)) ↔ (¬ (𝑥𝐵 ∧ ¬ 𝜑) → (𝑥𝐴𝜑)))
3 orcom 867 . . . 4 (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥𝐵 ∧ ¬ 𝜑) ∨ (𝑥𝐴𝜑)))
4 iman 401 . . . . 5 ((𝑥𝐵𝜑) ↔ ¬ (𝑥𝐵 ∧ ¬ 𝜑))
54imbi1i 349 . . . 4 (((𝑥𝐵𝜑) → (𝑥𝐴𝜑)) ↔ (¬ (𝑥𝐵 ∧ ¬ 𝜑) → (𝑥𝐴𝜑)))
62, 3, 53bitr4i 303 . . 3 (((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥𝐵𝜑) → (𝑥𝐴𝜑)))
76abbii 2801 . 2 {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥𝐵𝜑) → (𝑥𝐴𝜑))}
81, 7eqtri 2759 1 if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐵𝜑) → (𝑥𝐴𝜑))}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  {cab 2708  ifcif 4528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-if 4529
This theorem is referenced by:  iftrue  4534  nfifd  4557
  Copyright terms: Public domain W3C validator