Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfif2 | Structured version Visualization version GIF version |
Description: An alternate definition of the conditional operator df-if 4466 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
dfif2 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 4466 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | df-or 846 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | orcom 868 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | iman 403 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝜑) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) | |
5 | 4 | imbi1i 350 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 2, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | 6 | abbii 2806 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
8 | 1, 7 | eqtri 2764 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 845 = wceq 1539 ∈ wcel 2104 {cab 2713 ifcif 4465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-if 4466 |
This theorem is referenced by: iftrue 4471 nfifd 4494 |
Copyright terms: Public domain | W3C validator |