| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfif2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of the conditional operator df-if 4506 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| dfif2 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 4506 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
| 2 | df-or 848 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | orcom 870 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 4 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝜑) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 6 | 2, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 7 | 6 | abbii 2803 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
| 8 | 1, 7 | eqtri 2759 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cab 2714 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-if 4506 |
| This theorem is referenced by: iftrue 4511 nfifd 4535 |
| Copyright terms: Public domain | W3C validator |