![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfif2 | Structured version Visualization version GIF version |
Description: An alternate definition of the conditional operator df-if 4529 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
dfif2 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 4529 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | df-or 845 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | orcom 867 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝜑) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) | |
5 | 4 | imbi1i 349 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 2, 3, 5 | 3bitr4i 303 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | 6 | abbii 2801 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
8 | 1, 7 | eqtri 2759 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 {cab 2708 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-if 4529 |
This theorem is referenced by: iftrue 4534 nfifd 4557 |
Copyright terms: Public domain | W3C validator |