Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfif2 | Structured version Visualization version GIF version |
Description: An alternate definition of the conditional operator df-if 4465 with one fewer connectives (but probably less intuitive to understand). (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
dfif2 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 4465 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} | |
2 | df-or 844 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | orcom 866 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 ∧ ¬ 𝜑) ∨ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | iman 401 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 → 𝜑) ↔ ¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) | |
5 | 4 | imbi1i 349 | . . . 4 ⊢ (((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (¬ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
6 | 2, 3, 5 | 3bitr4i 302 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑)) ↔ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | 6 | abbii 2809 | . 2 ⊢ {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
8 | 1, 7 | eqtri 2767 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐵 → 𝜑) → (𝑥 ∈ 𝐴 ∧ 𝜑))} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 {cab 2716 ifcif 4464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-if 4465 |
This theorem is referenced by: iftrue 4470 nfifd 4493 |
Copyright terms: Public domain | W3C validator |