| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elsni 4642 | . . . . . . . 8
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | 
| 2 |  | sbceq1a 3798 | . . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | 
| 3 | 2 | biimpd 229 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜑 → [𝐴 / 𝑥]𝜑)) | 
| 4 | 1, 3 | syl 17 | . . . . . . 7
⊢ (𝑥 ∈ {𝐴} → (𝜑 → [𝐴 / 𝑥]𝜑)) | 
| 5 | 4 | imdistani 568 | . . . . . 6
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) → (𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) | 
| 6 | 5 | orcd 873 | . . . . 5
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) → ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) | 
| 7 | 2 | biimprd 248 | . . . . . . . 8
⊢ (𝑥 = 𝐴 → ([𝐴 / 𝑥]𝜑 → 𝜑)) | 
| 8 | 1, 7 | syl 17 | . . . . . . 7
⊢ (𝑥 ∈ {𝐴} → ([𝐴 / 𝑥]𝜑 → 𝜑)) | 
| 9 | 8 | imdistani 568 | . . . . . 6
⊢ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) → (𝑥 ∈ {𝐴} ∧ 𝜑)) | 
| 10 |  | noel 4337 | . . . . . . . 8
⊢  ¬
𝑥 ∈
∅ | 
| 11 | 10 | pm2.21i 119 | . . . . . . 7
⊢ (𝑥 ∈ ∅ → (𝑥 ∈ {𝐴} ∧ 𝜑)) | 
| 12 | 11 | adantr 480 | . . . . . 6
⊢ ((𝑥 ∈ ∅ ∧ ¬
[𝐴 / 𝑥]𝜑) → (𝑥 ∈ {𝐴} ∧ 𝜑)) | 
| 13 | 9, 12 | jaoi 857 | . . . . 5
⊢ (((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) → (𝑥 ∈ {𝐴} ∧ 𝜑)) | 
| 14 | 6, 13 | impbii 209 | . . . 4
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) | 
| 15 | 14 | abbii 2808 | . . 3
⊢ {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} | 
| 16 |  | nfv 1913 | . . . 4
⊢
Ⅎ𝑦((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) | 
| 17 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ {𝐴} | 
| 18 |  | nfsbc1v 3807 | . . . . . 6
⊢
Ⅎ𝑥[𝐴 / 𝑥]𝜑 | 
| 19 | 17, 18 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) | 
| 20 |  | nfv 1913 | . . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ ∅ | 
| 21 | 18 | nfn 1856 | . . . . . 6
⊢
Ⅎ𝑥 ¬
[𝐴 / 𝑥]𝜑 | 
| 22 | 20, 21 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ ∅ ∧ ¬
[𝐴 / 𝑥]𝜑) | 
| 23 | 19, 22 | nfor 1903 | . . . 4
⊢
Ⅎ𝑥((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) | 
| 24 |  | eleq1w 2823 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝐴} ↔ 𝑦 ∈ {𝐴})) | 
| 25 | 24 | anbi1d 631 | . . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑))) | 
| 26 |  | eleq1w 2823 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ∅ ↔ 𝑦 ∈ ∅)) | 
| 27 | 26 | anbi1d 631 | . . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) | 
| 28 | 25, 27 | orbi12d 918 | . . . 4
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) ↔ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)))) | 
| 29 | 16, 23, 28 | cbvabw 2812 | . . 3
⊢ {𝑥 ∣ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} | 
| 30 | 15, 29 | eqtri 2764 | . 2
⊢ {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} | 
| 31 |  | df-rab 3436 | . 2
⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} | 
| 32 |  | df-if 4525 | . 2
⊢
if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} | 
| 33 | 30, 31, 32 | 3eqtr4i 2774 | 1
⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) |