| Step | Hyp | Ref
| Expression |
| 1 | | elsni 4623 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) |
| 2 | | sbceq1a 3781 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 3 | 2 | biimpd 229 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝜑 → [𝐴 / 𝑥]𝜑)) |
| 4 | 1, 3 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {𝐴} → (𝜑 → [𝐴 / 𝑥]𝜑)) |
| 5 | 4 | imdistani 568 |
. . . . . 6
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) → (𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑)) |
| 6 | 5 | orcd 873 |
. . . . 5
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) → ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) |
| 7 | 2 | biimprd 248 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → ([𝐴 / 𝑥]𝜑 → 𝜑)) |
| 8 | 1, 7 | syl 17 |
. . . . . . 7
⊢ (𝑥 ∈ {𝐴} → ([𝐴 / 𝑥]𝜑 → 𝜑)) |
| 9 | 8 | imdistani 568 |
. . . . . 6
⊢ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) → (𝑥 ∈ {𝐴} ∧ 𝜑)) |
| 10 | | noel 4318 |
. . . . . . . 8
⊢ ¬
𝑥 ∈
∅ |
| 11 | 10 | pm2.21i 119 |
. . . . . . 7
⊢ (𝑥 ∈ ∅ → (𝑥 ∈ {𝐴} ∧ 𝜑)) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝑥 ∈ ∅ ∧ ¬
[𝐴 / 𝑥]𝜑) → (𝑥 ∈ {𝐴} ∧ 𝜑)) |
| 13 | 9, 12 | jaoi 857 |
. . . . 5
⊢ (((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) → (𝑥 ∈ {𝐴} ∧ 𝜑)) |
| 14 | 6, 13 | impbii 209 |
. . . 4
⊢ ((𝑥 ∈ {𝐴} ∧ 𝜑) ↔ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) |
| 15 | 14 | abbii 2803 |
. . 3
⊢ {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} |
| 16 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑦((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) |
| 17 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ {𝐴} |
| 18 | | nfsbc1v 3790 |
. . . . . 6
⊢
Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| 19 | 17, 18 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) |
| 20 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑥 𝑦 ∈ ∅ |
| 21 | 18 | nfn 1857 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
[𝐴 / 𝑥]𝜑 |
| 22 | 20, 21 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑥(𝑦 ∈ ∅ ∧ ¬
[𝐴 / 𝑥]𝜑) |
| 23 | 19, 22 | nfor 1904 |
. . . 4
⊢
Ⅎ𝑥((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) |
| 24 | | eleq1w 2818 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝐴} ↔ 𝑦 ∈ {𝐴})) |
| 25 | 24 | anbi1d 631 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑))) |
| 26 | | eleq1w 2818 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ∅ ↔ 𝑦 ∈ ∅)) |
| 27 | 26 | anbi1d 631 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑) ↔ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))) |
| 28 | 25, 27 | orbi12d 918 |
. . . 4
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)) ↔ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑)))) |
| 29 | 16, 23, 28 | cbvabw 2807 |
. . 3
⊢ {𝑥 ∣ ((𝑥 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑥 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} |
| 30 | 15, 29 | eqtri 2759 |
. 2
⊢ {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} |
| 31 | | df-rab 3421 |
. 2
⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝐴} ∧ 𝜑)} |
| 32 | | df-if 4506 |
. 2
⊢
if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝑦 ∣ ((𝑦 ∈ {𝐴} ∧ [𝐴 / 𝑥]𝜑) ∨ (𝑦 ∈ ∅ ∧ ¬ [𝐴 / 𝑥]𝜑))} |
| 33 | 30, 31, 32 | 3eqtr4i 2769 |
1
⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) |