Step | Hyp | Ref
| Expression |
1 | | imasval.u |
. 2
β’ (π β π = (πΉ βs π
)) |
2 | | df-imas 17350 |
. . . 4
β’
βs = (π β V, π β V β¦
β¦(Baseβπ) / π£β¦(({β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) βͺ
{β¨(TopSetβndx), ((TopOpenβπ) qTop π)β©, β¨(leβndx), ((π β (leβπ)) β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β π))), β*, <
))β©})) |
3 | 2 | a1i 11 |
. . 3
β’ (π β βs
= (π β V, π β V β¦
β¦(Baseβπ) / π£β¦(({β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) βͺ
{β¨(TopSetβndx), ((TopOpenβπ) qTop π)β©, β¨(leβndx), ((π β (leβπ)) β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β π))), β*, <
))β©}))) |
4 | | fvexd 6854 |
. . . 4
β’ ((π β§ (π = πΉ β§ π = π
)) β (Baseβπ) β V) |
5 | | simplrl 775 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = πΉ) |
6 | 5 | rneqd 5891 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran π = ran πΉ) |
7 | | imasval.f |
. . . . . . . . . . 11
β’ (π β πΉ:πβontoβπ΅) |
8 | | forn 6756 |
. . . . . . . . . . 11
β’ (πΉ:πβontoβπ΅ β ran πΉ = π΅) |
9 | 7, 8 | syl 17 |
. . . . . . . . . 10
β’ (π β ran πΉ = π΅) |
10 | 9 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran πΉ = π΅) |
11 | 6, 10 | eqtrd 2777 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran π = π΅) |
12 | 11 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(Baseβndx), ran πβ© = β¨(Baseβndx),
π΅β©) |
13 | | simplrr 776 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = π
) |
14 | 13 | fveq2d 6843 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Baseβπ) = (Baseβπ
)) |
15 | | simpr 485 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π£ = (Baseβπ)) |
16 | | imasval.v |
. . . . . . . . . . . 12
β’ (π β π = (Baseβπ
)) |
17 | 16 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = (Baseβπ
)) |
18 | 14, 15, 17 | 3eqtr4d 2787 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π£ = π) |
19 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβπ) = (πΉβπ)) |
20 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβπ) = (πΉβπ)) |
21 | 19, 20 | opeq12d 4836 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(πβπ), (πβπ)β© = β¨(πΉβπ), (πΉβπ)β©) |
22 | 13 | fveq2d 6843 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (+gβπ) = (+gβπ
)) |
23 | | imasval.p |
. . . . . . . . . . . . . . . 16
β’ + =
(+gβπ
) |
24 | 22, 23 | eqtr4di 2795 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (+gβπ) = + ) |
25 | 24 | oveqd 7368 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π(+gβπ)π) = (π + π)) |
26 | 5, 25 | fveq12d 6846 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(π(+gβπ)π)) = (πΉβ(π + π))) |
27 | 21, 26 | opeq12d 4836 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β© = β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©) |
28 | 27 | sneqd 4596 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
29 | 18, 28 | iuneq12d 4980 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
30 | 18, 29 | iuneq12d 4980 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
31 | | imasval.a |
. . . . . . . . . 10
β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
32 | 31 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π + π))β©}) |
33 | 30, 32 | eqtr4d 2780 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©} = β ) |
34 | 33 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(+gβndx),
βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β© =
β¨(+gβndx), β
β©) |
35 | 13 | fveq2d 6843 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (.rβπ) = (.rβπ
)) |
36 | | imasval.m |
. . . . . . . . . . . . . . . 16
β’ Γ =
(.rβπ
) |
37 | 35, 36 | eqtr4di 2795 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (.rβπ) = Γ ) |
38 | 37 | oveqd 7368 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π(.rβπ)π) = (π Γ π)) |
39 | 5, 38 | fveq12d 6846 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(π(.rβπ)π)) = (πΉβ(π Γ π))) |
40 | 21, 39 | opeq12d 4836 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β© = β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©) |
41 | 40 | sneqd 4596 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
42 | 18, 41 | iuneq12d 4980 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
43 | 18, 42 | iuneq12d 4980 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
44 | | imasval.t |
. . . . . . . . . 10
β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
45 | 44 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Γ π))β©}) |
46 | 43, 45 | eqtr4d 2780 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©} = β ) |
47 | 46 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(.rβndx),
βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β© =
β¨(.rβndx), β
β©) |
48 | 12, 34, 47 | tpeq123d 4707 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨(Baseβndx), ran πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} = {β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β
β©}) |
49 | 13 | fveq2d 6843 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Scalarβπ) = (Scalarβπ
)) |
50 | | imasval.g |
. . . . . . . . 9
β’ πΊ = (Scalarβπ
) |
51 | 49, 50 | eqtr4di 2795 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Scalarβπ) = πΊ) |
52 | 51 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(Scalarβndx),
(Scalarβπ)β© =
β¨(Scalarβndx), πΊβ©) |
53 | 51 | fveq2d 6843 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Baseβ(Scalarβπ)) = (BaseβπΊ)) |
54 | | imasval.k |
. . . . . . . . . . . 12
β’ πΎ = (BaseβπΊ) |
55 | 53, 54 | eqtr4di 2795 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (Baseβ(Scalarβπ)) = πΎ) |
56 | 20 | sneqd 4596 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {(πβπ)} = {(πΉβπ)}) |
57 | 13 | fveq2d 6843 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (
Β·π βπ) = ( Β·π
βπ
)) |
58 | | imasval.q |
. . . . . . . . . . . . . 14
β’ Β· = (
Β·π βπ
) |
59 | 57, 58 | eqtr4di 2795 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (
Β·π βπ) = Β· ) |
60 | 59 | oveqd 7368 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π( Β·π
βπ)π) = (π Β· π)) |
61 | 5, 60 | fveq12d 6846 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(π( Β·π
βπ)π)) = (πΉβ(π Β· π))) |
62 | 55, 56, 61 | mpoeq123dv 7426 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π))) = (π β πΎ, π₯ β {(πΉβπ)} β¦ (πΉβ(π Β· π)))) |
63 | 62 | iuneq2d 4981 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π))) = βͺ
π β π (π β πΎ, π₯ β {(πΉβπ)} β¦ (πΉβ(π Β· π)))) |
64 | 18 | iuneq1d 4979 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π))) = βͺ
π β π (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))) |
65 | | imasval.s |
. . . . . . . . . 10
β’ (π β β = βͺ π β π (π β πΎ, π₯ β {(πΉβπ)} β¦ (πΉβ(π Β· π)))) |
66 | 65 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β = βͺ π β π (π β πΎ, π₯ β {(πΉβπ)} β¦ (πΉβ(π Β· π)))) |
67 | 63, 64, 66 | 3eqtr4d 2787 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π))) = β ) |
68 | 67 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β© = β¨(
Β·π βndx), β
β©) |
69 | 13 | fveq2d 6843 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β
(Β·πβπ) =
(Β·πβπ
)) |
70 | | imasval.i |
. . . . . . . . . . . . . . 15
β’ , =
(Β·πβπ
) |
71 | 69, 70 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β
(Β·πβπ) = , ) |
72 | 71 | oveqd 7368 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π(Β·πβπ)π) = (π , π)) |
73 | 21, 72 | opeq12d 4836 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β© = β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©) |
74 | 73 | sneqd 4596 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©} = {β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©}) |
75 | 18, 74 | iuneq12d 4980 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©} = βͺ
π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©}) |
76 | 18, 75 | iuneq12d 4980 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©} = βͺ
π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©}) |
77 | | imasval.w |
. . . . . . . . . 10
β’ (π β πΌ = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©}) |
78 | 77 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β πΌ = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (π , π)β©}) |
79 | 76, 78 | eqtr4d 2780 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©} = πΌ) |
80 | 79 | opeq2d 4835 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β© =
β¨(Β·πβndx), πΌβ©) |
81 | 52, 68, 80 | tpeq123d 4707 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨(Scalarβndx),
(Scalarβπ)β©,
β¨( Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©} = {β¨(Scalarβndx),
πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) |
82 | 48, 81 | uneq12d 4122 |
. . . . 5
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ({β¨(Baseβndx), ran πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) = ({β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©})) |
83 | 13 | fveq2d 6843 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (TopOpenβπ) = (TopOpenβπ
)) |
84 | | imasval.j |
. . . . . . . . . 10
β’ π½ = (TopOpenβπ
) |
85 | 83, 84 | eqtr4di 2795 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (TopOpenβπ) = π½) |
86 | 85, 5 | oveq12d 7369 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((TopOpenβπ) qTop π) = (π½ qTop πΉ)) |
87 | | imasval.o |
. . . . . . . . 9
β’ (π β π = (π½ qTop πΉ)) |
88 | 87 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π = (π½ qTop πΉ)) |
89 | 86, 88 | eqtr4d 2780 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((TopOpenβπ) qTop π) = π) |
90 | 89 | opeq2d 4835 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(TopSetβndx),
((TopOpenβπ) qTop
π)β© =
β¨(TopSetβndx), πβ©) |
91 | 13 | fveq2d 6843 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (leβπ) = (leβπ
)) |
92 | | imasval.n |
. . . . . . . . . . 11
β’ π = (leβπ
) |
93 | 91, 92 | eqtr4di 2795 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (leβπ) = π) |
94 | 5, 93 | coeq12d 5818 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π β (leβπ)) = (πΉ β π)) |
95 | 5 | cnveqd 5829 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β‘π = β‘πΉ) |
96 | 94, 95 | coeq12d 5818 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((π β (leβπ)) β β‘π) = ((πΉ β π) β β‘πΉ)) |
97 | | imasval.l |
. . . . . . . . 9
β’ (π β β€ = ((πΉ β π) β β‘πΉ)) |
98 | 97 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β€ = ((πΉ β π) β β‘πΉ)) |
99 | 96, 98 | eqtr4d 2780 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((π β (leβπ)) β β‘π) = β€ ) |
100 | 99 | opeq2d 4835 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(leβndx), ((π β (leβπ)) β β‘π)β© = β¨(leβndx), β€
β©) |
101 | 18 | sqxpeqd 5663 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π£ Γ π£) = (π Γ π)) |
102 | 101 | oveq1d 7366 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((π£ Γ π£) βm (1...π)) = ((π Γ π) βm (1...π))) |
103 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(1st β(ββ1))) = (πΉβ(1st β(ββ1)))) |
104 | 103 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((πβ(1st β(ββ1))) = π₯ β (πΉβ(1st β(ββ1))) = π₯)) |
105 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(2nd β(ββπ))) = (πΉβ(2nd β(ββπ)))) |
106 | 105 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((πβ(2nd β(ββπ))) = π¦ β (πΉβ(2nd β(ββπ))) = π¦)) |
107 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(2nd β(ββπ))) = (πΉβ(2nd β(ββπ)))) |
108 | 5 | fveq1d 6841 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (πβ(1st β(ββ(π + 1)))) = (πΉβ(1st β(ββ(π + 1))))) |
109 | 107, 108 | eqeq12d 2753 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))) β (πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))) |
110 | 109 | ralbidv 3172 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))) β βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))) |
111 | 104, 106,
110 | 3anbi123d 1436 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1))))) β ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1))))))) |
112 | 102, 111 | rabeqbidv 3422 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} = {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))}) |
113 | 13 | fveq2d 6843 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (distβπ) = (distβπ
)) |
114 | | imasval.e |
. . . . . . . . . . . . . . . 16
β’ πΈ = (distβπ
) |
115 | 113, 114 | eqtr4di 2795 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (distβπ) = πΈ) |
116 | 115 | coeq1d 5815 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ((distβπ) β π) = (πΈ β π)) |
117 | 116 | oveq2d 7367 |
. . . . . . . . . . . . 13
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β
(β*π Ξ£g
((distβπ) β
π)) =
(β*π Ξ£g (πΈ β π))) |
118 | 112, 117 | mpteq12dv 5194 |
. . . . . . . . . . . 12
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))) = (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π)))) |
119 | 118 | rneqd 5891 |
. . . . . . . . . . 11
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))) = ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π)))) |
120 | 119 | iuneq2d 4981 |
. . . . . . . . . 10
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))) = βͺ π β β ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π)))) |
121 | 120 | infeq1d 9371 |
. . . . . . . . 9
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β inf(βͺ π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))), β*,
< ) = inf(βͺ π β β ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π))), β*, <
)) |
122 | 11, 11, 121 | mpoeq123dv 7426 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π₯ β ran π, π¦ β ran π β¦ inf(βͺ π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))), β*,
< )) = (π₯ β π΅, π¦ β π΅ β¦ inf(βͺ π β β ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π))), β*, <
))) |
123 | | imasval.d |
. . . . . . . . 9
β’ (π β π· = (π₯ β π΅, π¦ β π΅ β¦ inf(βͺ π β β ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π))), β*, <
))) |
124 | 123 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β π· = (π₯ β π΅, π¦ β π΅ β¦ inf(βͺ π β β ran (π β {β β ((π Γ π) βm (1...π)) β£ ((πΉβ(1st β(ββ1))) = π₯ β§ (πΉβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πΉβ(2nd β(ββπ))) = (πΉβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g (πΈ β π))), β*, <
))) |
125 | 122, 124 | eqtr4d 2780 |
. . . . . . 7
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (π₯ β ran π, π¦ β ran π β¦ inf(βͺ π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))), β*,
< )) = π·) |
126 | 125 | opeq2d 4835 |
. . . . . 6
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))), β*,
< ))β© = β¨(distβndx), π·β©) |
127 | 90, 100, 126 | tpeq123d 4707 |
. . . . 5
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β {β¨(TopSetβndx),
((TopOpenβπ) qTop
π)β©,
β¨(leβndx), ((π
β (leβπ))
β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β
π))), β*,
< ))β©} = {β¨(TopSetβndx), πβ©, β¨(leβndx), β€ β©,
β¨(distβndx), π·β©}) |
128 | 82, 127 | uneq12d 4122 |
. . . 4
β’ (((π β§ (π = πΉ β§ π = π
)) β§ π£ = (Baseβπ)) β (({β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) βͺ
{β¨(TopSetβndx), ((TopOpenβπ) qTop π)β©, β¨(leβndx), ((π β (leβπ)) β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β π))), β*, <
))β©}) = (({β¨(Baseβndx), π΅β©, β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx), πβ©, β¨(leβndx), β€ β©,
β¨(distβndx), π·β©})) |
129 | 4, 128 | csbied 3891 |
. . 3
β’ ((π β§ (π = πΉ β§ π = π
)) β β¦(Baseβπ) / π£β¦(({β¨(Baseβndx), ran
πβ©,
β¨(+gβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(+gβπ)π))β©}β©,
β¨(.rβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (πβ(π(.rβπ)π))β©}β©} βͺ
{β¨(Scalarβndx), (Scalarβπ)β©, β¨(
Β·π βndx), βͺ π β π£ (π β (Baseβ(Scalarβπ)), π₯ β {(πβπ)} β¦ (πβ(π( Β·π
βπ)π)))β©,
β¨(Β·πβndx), βͺ π β π£ βͺ π β π£ {β¨β¨(πβπ), (πβπ)β©, (π(Β·πβπ)π)β©}β©}) βͺ
{β¨(TopSetβndx), ((TopOpenβπ) qTop π)β©, β¨(leβndx), ((π β (leβπ)) β β‘π)β©, β¨(distβndx), (π₯ β ran π, π¦ β ran π β¦ inf(βͺ
π β β ran (π β {β β ((π£ Γ π£) βm (1...π)) β£ ((πβ(1st β(ββ1))) = π₯ β§ (πβ(2nd β(ββπ))) = π¦ β§ βπ β (1...(π β 1))(πβ(2nd β(ββπ))) = (πβ(1st β(ββ(π + 1)))))} β¦
(β*π Ξ£g
((distβπ) β π))), β*, <
))β©}) = (({β¨(Baseβndx), π΅β©, β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx), πβ©, β¨(leβndx), β€ β©,
β¨(distβndx), π·β©})) |
130 | | fof 6753 |
. . . . 5
β’ (πΉ:πβontoβπ΅ β πΉ:πβΆπ΅) |
131 | 7, 130 | syl 17 |
. . . 4
β’ (π β πΉ:πβΆπ΅) |
132 | | fvex 6852 |
. . . . 5
β’
(Baseβπ
)
β V |
133 | 16, 132 | eqeltrdi 2846 |
. . . 4
β’ (π β π β V) |
134 | 131, 133 | fexd 7173 |
. . 3
β’ (π β πΉ β V) |
135 | | imasval.r |
. . . 4
β’ (π β π
β π) |
136 | 135 | elexd 3463 |
. . 3
β’ (π β π
β V) |
137 | | tpex 7673 |
. . . . . 6
β’
{β¨(Baseβndx), π΅β©, β¨(+gβndx),
β
β©, β¨(.rβndx), β β©} β
V |
138 | | tpex 7673 |
. . . . . 6
β’
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©} β V |
139 | 137, 138 | unex 7672 |
. . . . 5
β’
({β¨(Baseβndx), π΅β©, β¨(+gβndx),
β
β©, β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) β V |
140 | | tpex 7673 |
. . . . 5
β’
{β¨(TopSetβndx), πβ©, β¨(leβndx), β€ β©,
β¨(distβndx), π·β©} β V |
141 | 139, 140 | unex 7672 |
. . . 4
β’
(({β¨(Baseβndx), π΅β©, β¨(+gβndx),
β
β©, β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx),
πβ©,
β¨(leβndx), β€ β©,
β¨(distβndx), π·β©}) β V |
142 | 141 | a1i 11 |
. . 3
β’ (π β (({β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx),
πβ©,
β¨(leβndx), β€ β©,
β¨(distβndx), π·β©}) β V) |
143 | 3, 129, 134, 136, 142 | ovmpod 7501 |
. 2
β’ (π β (πΉ βs π
) = (({β¨(Baseβndx),
π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx),
πβ©,
β¨(leβndx), β€ β©,
β¨(distβndx), π·β©})) |
144 | 1, 143 | eqtrd 2777 |
1
β’ (π β π = (({β¨(Baseβndx), π΅β©,
β¨(+gβndx), β β©,
β¨(.rβndx), β β©} βͺ
{β¨(Scalarβndx), πΊβ©, β¨(
Β·π βndx), β β©,
β¨(Β·πβndx), πΌβ©}) βͺ {β¨(TopSetβndx),
πβ©,
β¨(leβndx), β€ β©,
β¨(distβndx), π·β©})) |