Step | Hyp | Ref
| Expression |
1 | | imasval.u |
. 2
⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
2 | | df-imas 17136 |
. . . 4
⊢
“s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → “s
= (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}))) |
4 | | fvexd 6771 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) → (Base‘𝑟) ∈ V) |
5 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑓 = 𝐹) |
6 | 5 | rneqd 5836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = ran 𝐹) |
7 | | imasval.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
8 | | forn 6675 |
. . . . . . . . . . 11
⊢ (𝐹:𝑉–onto→𝐵 → ran 𝐹 = 𝐵) |
9 | 7, 8 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝐹 = 𝐵) |
10 | 9 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝐹 = 𝐵) |
11 | 6, 10 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran 𝑓 = 𝐵) |
12 | 11 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(Base‘ndx), ran 𝑓〉 = 〈(Base‘ndx),
𝐵〉) |
13 | | simplrr 774 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑟 = 𝑅) |
14 | 13 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘𝑟) = (Base‘𝑅)) |
15 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = (Base‘𝑟)) |
16 | | imasval.v |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
17 | 16 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑉 = (Base‘𝑅)) |
18 | 14, 15, 17 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑣 = 𝑉) |
19 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘𝑝) = (𝐹‘𝑝)) |
20 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘𝑞) = (𝐹‘𝑞)) |
21 | 19, 20 | opeq12d 4809 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(𝑓‘𝑝), (𝑓‘𝑞)〉 = 〈(𝐹‘𝑝), (𝐹‘𝑞)〉) |
22 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g‘𝑟) = (+g‘𝑅)) |
23 | | imasval.p |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘𝑅) |
24 | 22, 23 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (+g‘𝑟) = + ) |
25 | 24 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(+g‘𝑟)𝑞) = (𝑝 + 𝑞)) |
26 | 5, 25 | fveq12d 6763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(+g‘𝑟)𝑞)) = (𝐹‘(𝑝 + 𝑞))) |
27 | 21, 26 | opeq12d 4809 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉) |
28 | 27 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
29 | 18, 28 | iuneq12d 4949 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
30 | 18, 29 | iuneq12d 4949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
31 | | imasval.a |
. . . . . . . . . 10
⊢ (𝜑 → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
32 | 31 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ✚ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 + 𝑞))〉}) |
33 | 30, 32 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉} = ✚ ) |
34 | 33 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(+g‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉 =
〈(+g‘ndx), ✚
〉) |
35 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r‘𝑟) = (.r‘𝑅)) |
36 | | imasval.m |
. . . . . . . . . . . . . . . 16
⊢ × =
(.r‘𝑅) |
37 | 35, 36 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (.r‘𝑟) = × ) |
38 | 37 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(.r‘𝑟)𝑞) = (𝑝 × 𝑞)) |
39 | 5, 38 | fveq12d 6763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝(.r‘𝑟)𝑞)) = (𝐹‘(𝑝 × 𝑞))) |
40 | 21, 39 | opeq12d 4809 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉) |
41 | 40 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
42 | 18, 41 | iuneq12d 4949 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
43 | 18, 42 | iuneq12d 4949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
44 | | imasval.t |
. . . . . . . . . 10
⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
45 | 44 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 × 𝑞))〉}) |
46 | 43, 45 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉} = ∙ ) |
47 | 46 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(.r‘ndx),
∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉 =
〈(.r‘ndx), ∙
〉) |
48 | 12, 34, 47 | tpeq123d 4681 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈(Base‘ndx), ran 𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙
〉}) |
49 | 13 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
50 | | imasval.g |
. . . . . . . . 9
⊢ 𝐺 = (Scalar‘𝑅) |
51 | 49, 50 | eqtr4di 2797 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Scalar‘𝑟) = 𝐺) |
52 | 51 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(Scalar‘ndx),
(Scalar‘𝑟)〉 =
〈(Scalar‘ndx), 𝐺〉) |
53 | 51 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘(Scalar‘𝑟)) = (Base‘𝐺)) |
54 | | imasval.k |
. . . . . . . . . . . 12
⊢ 𝐾 = (Base‘𝐺) |
55 | 53, 54 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (Base‘(Scalar‘𝑟)) = 𝐾) |
56 | 20 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {(𝑓‘𝑞)} = {(𝐹‘𝑞)}) |
57 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (
·𝑠 ‘𝑟) = ( ·𝑠
‘𝑅)) |
58 | | imasval.q |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑅) |
59 | 57, 58 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (
·𝑠 ‘𝑟) = · ) |
60 | 59 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝( ·𝑠
‘𝑟)𝑞) = (𝑝 · 𝑞)) |
61 | 5, 60 | fveq12d 6763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)) = (𝐹‘(𝑝 · 𝑞))) |
62 | 55, 56, 61 | mpoeq123dv 7328 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) = (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
63 | 62 | iuneq2d 4950 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) = ∪
𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
64 | 18 | iuneq1d 4948 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) = ∪
𝑞 ∈ 𝑉 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))) |
65 | | imasval.s |
. . . . . . . . . 10
⊢ (𝜑 → ⊗ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
66 | 65 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ⊗ = ∪ 𝑞 ∈ 𝑉 (𝑝 ∈ 𝐾, 𝑥 ∈ {(𝐹‘𝑞)} ↦ (𝐹‘(𝑝 · 𝑞)))) |
67 | 63, 64, 66 | 3eqtr4d 2788 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞))) = ⊗ ) |
68 | 67 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉 = 〈(
·𝑠 ‘ndx), ⊗
〉) |
69 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) →
(·𝑖‘𝑟) =
(·𝑖‘𝑅)) |
70 | | imasval.i |
. . . . . . . . . . . . . . 15
⊢ , =
(·𝑖‘𝑅) |
71 | 69, 70 | eqtr4di 2797 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) →
(·𝑖‘𝑟) = , ) |
72 | 71 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑝(·𝑖‘𝑟)𝑞) = (𝑝 , 𝑞)) |
73 | 21, 72 | opeq12d 4809 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉 = 〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉) |
74 | 73 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} = {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
75 | 18, 74 | iuneq12d 4949 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} = ∪
𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
76 | 18, 75 | iuneq12d 4949 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} = ∪
𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
77 | | imasval.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
78 | 77 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝐼 = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝑝 , 𝑞)〉}) |
79 | 76, 78 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉} = 𝐼) |
80 | 79 | opeq2d 4808 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) →
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉 =
〈(·𝑖‘ndx), 𝐼〉) |
81 | 52, 68, 80 | tpeq123d 4681 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈(Scalar‘ndx),
(Scalar‘𝑟)〉,
〈( ·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉} = {〈(Scalar‘ndx),
𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) |
82 | 48, 81 | uneq12d 4094 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ({〈(Base‘ndx), ran 𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉})) |
83 | 13 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (TopOpen‘𝑟) = (TopOpen‘𝑅)) |
84 | | imasval.j |
. . . . . . . . . 10
⊢ 𝐽 = (TopOpen‘𝑅) |
85 | 83, 84 | eqtr4di 2797 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (TopOpen‘𝑟) = 𝐽) |
86 | 85, 5 | oveq12d 7273 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((TopOpen‘𝑟) qTop 𝑓) = (𝐽 qTop 𝐹)) |
87 | | imasval.o |
. . . . . . . . 9
⊢ (𝜑 → 𝑂 = (𝐽 qTop 𝐹)) |
88 | 87 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝑂 = (𝐽 qTop 𝐹)) |
89 | 86, 88 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((TopOpen‘𝑟) qTop 𝑓) = 𝑂) |
90 | 89 | opeq2d 4808 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(TopSet‘ndx),
((TopOpen‘𝑟) qTop
𝑓)〉 =
〈(TopSet‘ndx), 𝑂〉) |
91 | 13 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (le‘𝑟) = (le‘𝑅)) |
92 | | imasval.n |
. . . . . . . . . . 11
⊢ 𝑁 = (le‘𝑅) |
93 | 91, 92 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (le‘𝑟) = 𝑁) |
94 | 5, 93 | coeq12d 5762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓 ∘ (le‘𝑟)) = (𝐹 ∘ 𝑁)) |
95 | 5 | cnveqd 5773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ◡𝑓 = ◡𝐹) |
96 | 94, 95 | coeq12d 5762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓) = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
97 | | imasval.l |
. . . . . . . . 9
⊢ (𝜑 → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
98 | 97 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ≤ = ((𝐹 ∘ 𝑁) ∘ ◡𝐹)) |
99 | 96, 98 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓) = ≤ ) |
100 | 99 | opeq2d 4808 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉 = 〈(le‘ndx), ≤
〉) |
101 | 18 | sqxpeqd 5612 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑣 × 𝑣) = (𝑉 × 𝑉)) |
102 | 101 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑣 × 𝑣) ↑m (1...𝑛)) = ((𝑉 × 𝑉) ↑m (1...𝑛))) |
103 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(1st ‘(ℎ‘1))) = (𝐹‘(1st ‘(ℎ‘1)))) |
104 | 103 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ↔ (𝐹‘(1st ‘(ℎ‘1))) = 𝑥)) |
105 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘(2nd ‘(ℎ‘𝑛)))) |
106 | 105 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ↔ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦)) |
107 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(2nd ‘(ℎ‘𝑖)))) |
108 | 5 | fveq1d 6758 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) |
109 | 107, 108 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ (𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))) |
110 | 109 | ralbidv 3120 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))) ↔ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))) |
111 | 104, 106,
110 | 3anbi123d 1434 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))))) |
112 | 102, 111 | rabeqbidv 3410 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))}) |
113 | 13 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (dist‘𝑟) = (dist‘𝑅)) |
114 | | imasval.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (dist‘𝑅) |
115 | 113, 114 | eqtr4di 2797 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (dist‘𝑟) = 𝐸) |
116 | 115 | coeq1d 5759 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ((dist‘𝑟) ∘ 𝑔) = (𝐸 ∘ 𝑔)) |
117 | 116 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) →
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔)) =
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) |
118 | 112, 117 | mpteq12dv 5161 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) = (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
119 | 118 | rneqd 5836 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) = ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
120 | 119 | iuneq2d 4950 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → ∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
121 | 120 | infeq1d 9166 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
)) |
122 | 11, 11, 121 | mpoeq123dv 7328 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< )) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
))) |
123 | | imasval.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
))) |
124 | 123 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, <
))) |
125 | 122, 124 | eqtr4d 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< )) = 𝐷) |
126 | 125 | opeq2d 4808 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉 = 〈(dist‘ndx), 𝐷〉) |
127 | 90, 100, 126 | tpeq123d 4681 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → {〈(TopSet‘ndx),
((TopOpen‘𝑟) qTop
𝑓)〉,
〈(le‘ndx), ((𝑓
∘ (le‘𝑟))
∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘
𝑔))), ℝ*,
< ))〉} = {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}) |
128 | 82, 127 | uneq12d 4094 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) ∧ 𝑣 = (Base‘𝑟)) → (({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉})) |
129 | 4, 128 | csbied 3866 |
. . 3
⊢ ((𝜑 ∧ (𝑓 = 𝐹 ∧ 𝑟 = 𝑅)) → ⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉}) = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉})) |
130 | | fof 6672 |
. . . . 5
⊢ (𝐹:𝑉–onto→𝐵 → 𝐹:𝑉⟶𝐵) |
131 | 7, 130 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝑉⟶𝐵) |
132 | | fvex 6769 |
. . . . 5
⊢
(Base‘𝑅)
∈ V |
133 | 16, 132 | eqeltrdi 2847 |
. . . 4
⊢ (𝜑 → 𝑉 ∈ V) |
134 | 131, 133 | fexd 7085 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
135 | | imasval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑍) |
136 | 135 | elexd 3442 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
137 | | tpex 7575 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ∙ 〉} ∈
V |
138 | | tpex 7575 |
. . . . . 6
⊢
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉} ∈ V |
139 | 137, 138 | unex 7574 |
. . . . 5
⊢
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∈ V |
140 | | tpex 7575 |
. . . . 5
⊢
{〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉} ∈ V |
141 | 139, 140 | unex 7574 |
. . . 4
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}) ∈ V |
142 | 141 | a1i 11 |
. . 3
⊢ (𝜑 → (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉}) ∈ V) |
143 | 3, 129, 134, 136, 142 | ovmpod 7403 |
. 2
⊢ (𝜑 → (𝐹 “s 𝑅) = (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉})) |
144 | 1, 143 | eqtrd 2778 |
1
⊢ (𝜑 → 𝑈 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), ∙ 〉} ∪
{〈(Scalar‘ndx), 𝐺〉, 〈(
·𝑠 ‘ndx), ⊗ 〉,
〈(·𝑖‘ndx), 𝐼〉}) ∪ {〈(TopSet‘ndx),
𝑂〉,
〈(le‘ndx), ≤ 〉,
〈(dist‘ndx), 𝐷〉})) |