MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg1 Structured version   Visualization version   GIF version

Theorem nfitg1 24938
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
nfitg1 𝑥𝐴𝐵 d𝑥

Proof of Theorem nfitg1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 24787 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
2 nfcv 2907 . . 3 𝑥(0...3)
3 nfcv 2907 . . . 4 𝑥(i↑𝑘)
4 nfcv 2907 . . . 4 𝑥 ·
5 nfcv 2907 . . . . 5 𝑥2
6 nfmpt1 5182 . . . . 5 𝑥(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))
75, 6nffv 6784 . . . 4 𝑥(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))
83, 4, 7nfov 7305 . . 3 𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
92, 8nfsum 15402 . 2 𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
101, 9nfcxfr 2905 1 𝑥𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  wnfc 2887  csb 3832  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  ici 10873   · cmul 10876  cle 11010   / cdiv 11632  3c3 12029  ...cfz 13239  cexp 13782  cre 14808  Σcsu 15397  2citg2 24780  citg 24782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seq 13722  df-sum 15398  df-itg 24787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator