| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfitg1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| nfitg1 | ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25544 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥(0...3) | |
| 3 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥(i↑𝑘) | |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥 · | |
| 5 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥∫2 | |
| 6 | nfmpt1 5188 | . . . . 5 ⊢ Ⅎ𝑥(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)) | |
| 7 | 5, 6 | nffv 6827 | . . . 4 ⊢ Ⅎ𝑥(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))) |
| 8 | 3, 4, 7 | nfov 7371 | . . 3 ⊢ Ⅎ𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 9 | 2, 8 | nfsum 15590 | . 2 ⊢ Ⅎ𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 10 | 1, 9 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2110 Ⅎwnfc 2877 ⦋csb 3848 ifcif 4473 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℝcr 10997 0cc0 10998 ici 11000 · cmul 11003 ≤ cle 11139 / cdiv 11766 3c3 12173 ...cfz 13399 ↑cexp 13960 ℜcre 14996 Σcsu 15585 ∫2citg2 25537 ∫citg 25539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seq 13901 df-sum 15586 df-itg 25544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |