| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfitg1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| nfitg1 | ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25581 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) | |
| 2 | nfcv 2899 | . . 3 ⊢ Ⅎ𝑥(0...3) | |
| 3 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥(i↑𝑘) | |
| 4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥 · | |
| 5 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥∫2 | |
| 6 | nfmpt1 5225 | . . . . 5 ⊢ Ⅎ𝑥(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)) | |
| 7 | 5, 6 | nffv 6891 | . . . 4 ⊢ Ⅎ𝑥(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))) |
| 8 | 3, 4, 7 | nfov 7440 | . . 3 ⊢ Ⅎ𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 9 | 2, 8 | nfsum 15712 | . 2 ⊢ Ⅎ𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 10 | 1, 9 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2884 ⦋csb 3879 ifcif 4505 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 ici 11136 · cmul 11139 ≤ cle 11275 / cdiv 11899 3c3 12301 ...cfz 13529 ↑cexp 14084 ℜcre 15121 Σcsu 15707 ∫2citg2 25574 ∫citg 25576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-sum 15708 df-itg 25581 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |