MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg1 Structured version   Visualization version   GIF version

Theorem nfitg1 25695
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
nfitg1 𝑥𝐴𝐵 d𝑥

Proof of Theorem nfitg1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 25544 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
2 nfcv 2892 . . 3 𝑥(0...3)
3 nfcv 2892 . . . 4 𝑥(i↑𝑘)
4 nfcv 2892 . . . 4 𝑥 ·
5 nfcv 2892 . . . . 5 𝑥2
6 nfmpt1 5188 . . . . 5 𝑥(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))
75, 6nffv 6827 . . . 4 𝑥(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))
83, 4, 7nfov 7371 . . 3 𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
92, 8nfsum 15590 . 2 𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
101, 9nfcxfr 2890 1 𝑥𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2110  wnfc 2877  csb 3848  ifcif 4473   class class class wbr 5089  cmpt 5170  cfv 6477  (class class class)co 7341  cr 10997  0cc0 10998  ici 11000   · cmul 11003  cle 11139   / cdiv 11766  3c3 12173  ...cfz 13399  cexp 13960  cre 14996  Σcsu 15585  2citg2 25537  citg 25539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seq 13901  df-sum 15586  df-itg 25544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator