Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfitg1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
nfitg1 | ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg 24787 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑥(0...3) | |
3 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥(i↑𝑘) | |
4 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥 · | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥∫2 | |
6 | nfmpt1 5182 | . . . . 5 ⊢ Ⅎ𝑥(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)) | |
7 | 5, 6 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))) |
8 | 3, 4, 7 | nfov 7305 | . . 3 ⊢ Ⅎ𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
9 | 2, 8 | nfsum 15402 | . 2 ⊢ Ⅎ𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
10 | 1, 9 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 Ⅎwnfc 2887 ⦋csb 3832 ifcif 4459 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 ici 10873 · cmul 10876 ≤ cle 11010 / cdiv 11632 3c3 12029 ...cfz 13239 ↑cexp 13782 ℜcre 14808 Σcsu 15397 ∫2citg2 24780 ∫citg 24782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-seq 13722 df-sum 15398 df-itg 24787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |