MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg1 Structured version   Visualization version   GIF version

Theorem nfitg1 25829
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
nfitg1 𝑥𝐴𝐵 d𝑥

Proof of Theorem nfitg1
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 25677 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
2 nfcv 2908 . . 3 𝑥(0...3)
3 nfcv 2908 . . . 4 𝑥(i↑𝑘)
4 nfcv 2908 . . . 4 𝑥 ·
5 nfcv 2908 . . . . 5 𝑥2
6 nfmpt1 5274 . . . . 5 𝑥(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))
75, 6nffv 6930 . . . 4 𝑥(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))
83, 4, 7nfov 7478 . . 3 𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
92, 8nfsum 15739 . 2 𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑧if((𝑥𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))))
101, 9nfcxfr 2906 1 𝑥𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  wnfc 2893  csb 3921  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  ici 11186   · cmul 11189  cle 11325   / cdiv 11947  3c3 12349  ...cfz 13567  cexp 14112  cre 15146  Σcsu 15734  2citg2 25670  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-sum 15735  df-itg 25677
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator