| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfitg1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| nfitg1 | ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25561 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) | |
| 2 | nfcv 2896 | . . 3 ⊢ Ⅎ𝑥(0...3) | |
| 3 | nfcv 2896 | . . . 4 ⊢ Ⅎ𝑥(i↑𝑘) | |
| 4 | nfcv 2896 | . . . 4 ⊢ Ⅎ𝑥 · | |
| 5 | nfcv 2896 | . . . . 5 ⊢ Ⅎ𝑥∫2 | |
| 6 | nfmpt1 5194 | . . . . 5 ⊢ Ⅎ𝑥(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)) | |
| 7 | 5, 6 | nffv 6841 | . . . 4 ⊢ Ⅎ𝑥(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))) |
| 8 | 3, 4, 7 | nfov 7385 | . . 3 ⊢ Ⅎ𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 9 | 2, 8 | nfsum 15608 | . 2 ⊢ Ⅎ𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
| 10 | 1, 9 | nfcxfr 2894 | 1 ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 Ⅎwnfc 2881 ⦋csb 3847 ifcif 4476 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 0cc0 11016 ici 11018 · cmul 11021 ≤ cle 11157 / cdiv 11784 3c3 12191 ...cfz 13417 ↑cexp 13978 ℜcre 15014 Σcsu 15603 ∫2citg2 25554 ∫citg 25556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-seq 13919 df-sum 15604 df-itg 25561 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |