![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfitg1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
nfitg1 | ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg 23611 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) | |
2 | nfcv 2913 | . . 3 ⊢ Ⅎ𝑥(0...3) | |
3 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑥(i↑𝑘) | |
4 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑥 · | |
5 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥∫2 | |
6 | nfmpt1 4882 | . . . . 5 ⊢ Ⅎ𝑥(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)) | |
7 | 5, 6 | nffv 6341 | . . . 4 ⊢ Ⅎ𝑥(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0))) |
8 | 3, 4, 7 | nfov 6825 | . . 3 ⊢ Ⅎ𝑥((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
9 | 2, 8 | nfsum 14629 | . 2 ⊢ Ⅎ𝑥Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑧⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧), 𝑧, 0)))) |
10 | 1, 9 | nfcxfr 2911 | 1 ⊢ Ⅎ𝑥∫𝐴𝐵 d𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 ∈ wcel 2145 Ⅎwnfc 2900 ⦋csb 3682 ifcif 4226 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 0cc0 10142 ici 10144 · cmul 10147 ≤ cle 10281 / cdiv 10890 3c3 11277 ...cfz 12533 ↑cexp 13067 ℜcre 14045 Σcsu 14624 ∫2citg2 23604 ∫citg 23606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-seq 13009 df-sum 14625 df-itg 23611 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |