| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfitg | Structured version Visualization version GIF version | ||
| Description: Evaluate the class substitution in df-itg 25549. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| Ref | Expression |
|---|---|
| dfitg.1 | ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) |
| Ref | Expression |
|---|---|
| dfitg | ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25549 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 2 | fvex 6835 | . . . . . . . 8 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) ∈ V | |
| 3 | id 22 | . . . . . . . . . . . 12 ⊢ (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = (ℜ‘(𝐵 / (i↑𝑘)))) | |
| 4 | dfitg.1 | . . . . . . . . . . . 12 ⊢ 𝑇 = (ℜ‘(𝐵 / (i↑𝑘))) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . . . . . . . 11 ⊢ (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = 𝑇) |
| 6 | 5 | breq2d 5103 | . . . . . . . . . 10 ⊢ (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ 𝑇)) |
| 7 | 6 | anbi2d 630 | . . . . . . . . 9 ⊢ (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇))) |
| 8 | 7, 5 | ifbieq1d 4500 | . . . . . . . 8 ⊢ (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) |
| 9 | 2, 8 | csbie 3885 | . . . . . . 7 ⊢ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0) |
| 10 | 9 | mpteq2i 5187 | . . . . . 6 ⊢ (𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)) |
| 11 | 10 | fveq2i 6825 | . . . . 5 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))) |
| 12 | 11 | oveq2i 7357 | . . . 4 ⊢ ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))) |
| 14 | 13 | sumeq2i 15602 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) |
| 15 | 1, 14 | eqtri 2754 | 1 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⦋csb 3850 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 ici 11005 · cmul 11008 ≤ cle 11144 / cdiv 11771 3c3 12178 ...cfz 13404 ↑cexp 13965 ℜcre 15001 Σcsu 15590 ∫2citg2 25542 ∫citg 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-seq 13906 df-sum 15591 df-itg 25549 |
| This theorem is referenced by: itgeq1fOLD 25698 nfitg 25701 cbvitg 25702 itgeq2 25704 itgresr 25705 itg0 25706 itgz 25707 itgcl 25710 itgcnlem 25716 itgss 25738 itgeqa 25740 itgsplit 25762 itgeq12dv 34334 |
| Copyright terms: Public domain | W3C validator |