MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfitg Structured version   Visualization version   GIF version

Theorem dfitg 25269
Description: Evaluate the class substitution in df-itg 25122. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
dfitg.1 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
Assertion
Ref Expression
dfitg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑇(𝑥,𝑘)

Proof of Theorem dfitg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-itg 25122 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 fvex 6901 . . . . . . . 8 (ℜ‘(𝐵 / (i↑𝑘))) ∈ V
3 id 22 . . . . . . . . . . . 12 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = (ℜ‘(𝐵 / (i↑𝑘))))
4 dfitg.1 . . . . . . . . . . . 12 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
53, 4eqtr4di 2791 . . . . . . . . . . 11 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = 𝑇)
65breq2d 5159 . . . . . . . . . 10 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ 𝑇))
76anbi2d 630 . . . . . . . . 9 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐴 ∧ 0 ≤ 𝑇)))
87, 5ifbieq1d 4551 . . . . . . . 8 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
92, 8csbie 3928 . . . . . . 7 (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)
109mpteq2i 5252 . . . . . 6 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
1110fveq2i 6891 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
1211oveq2i 7415 . . . 4 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
1312a1i 11 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))))
1413sumeq2i 15641 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
151, 14eqtri 2761 1 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  csb 3892  ifcif 4527   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7404  cr 11105  0cc0 11106  ici 11108   · cmul 11111  cle 11245   / cdiv 11867  3c3 12264  ...cfz 13480  cexp 14023  cre 15040  Σcsu 15628  2citg2 25115  citg 25117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-seq 13963  df-sum 15629  df-itg 25122
This theorem is referenced by:  itgeq1f  25271  nfitg  25274  cbvitg  25275  itgeq2  25277  itgresr  25278  itg0  25279  itgz  25280  itgcl  25283  itgcnlem  25289  itgss  25311  itgeqa  25313  itgsplit  25335  itgeq12dv  33263
  Copyright terms: Public domain W3C validator