MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfitg Structured version   Visualization version   GIF version

Theorem dfitg 23936
Description: Evaluate the class substitution in df-itg 23790. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
dfitg.1 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
Assertion
Ref Expression
dfitg 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
Distinct variable groups:   𝑥,𝑘   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑇(𝑥,𝑘)

Proof of Theorem dfitg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-itg 23790 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 fvex 6447 . . . . . . . 8 (ℜ‘(𝐵 / (i↑𝑘))) ∈ V
3 id 22 . . . . . . . . . . . 12 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = (ℜ‘(𝐵 / (i↑𝑘))))
4 dfitg.1 . . . . . . . . . . . 12 𝑇 = (ℜ‘(𝐵 / (i↑𝑘)))
53, 4syl6eqr 2880 . . . . . . . . . . 11 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → 𝑦 = 𝑇)
65breq2d 4886 . . . . . . . . . 10 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → (0 ≤ 𝑦 ↔ 0 ≤ 𝑇))
76anbi2d 624 . . . . . . . . 9 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → ((𝑥𝐴 ∧ 0 ≤ 𝑦) ↔ (𝑥𝐴 ∧ 0 ≤ 𝑇)))
87, 5ifbieq1d 4330 . . . . . . . 8 (𝑦 = (ℜ‘(𝐵 / (i↑𝑘))) → if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
92, 8csbie 3784 . . . . . . 7 (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0) = if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)
109mpteq2i 4965 . . . . . 6 (𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))
1110fveq2i 6437 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))
1211oveq2i 6917 . . . 4 ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
1312a1i 11 . . 3 (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0)))))
1413sumeq2i 14807 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
151, 14eqtri 2850 1 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝑇), 𝑇, 0))))
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  csb 3758  ifcif 4307   class class class wbr 4874  cmpt 4953  cfv 6124  (class class class)co 6906  cr 10252  0cc0 10253  ici 10255   · cmul 10258  cle 10393   / cdiv 11010  3c3 11408  ...cfz 12620  cexp 13155  cre 14215  Σcsu 14794  2citg2 23783  citg 23785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-seq 13097  df-sum 14795  df-itg 23790
This theorem is referenced by:  itgeq1f  23938  nfitg  23941  cbvitg  23942  itgeq2  23944  itgresr  23945  itg0  23946  itgz  23947  itgcl  23950  itgcnlem  23956  itgss  23978  itgeqa  23980  itgsplit  24002  itgeq12dv  30934
  Copyright terms: Public domain W3C validator