| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version | ||
| Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25549 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 2 | sumex 15592 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ⦋csb 3850 ifcif 4475 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 ici 11005 · cmul 11008 ≤ cle 11144 / cdiv 11771 3c3 12178 ...cfz 13404 ↑cexp 13965 ℜcre 15001 Σcsu 15590 ∫2citg2 25542 ∫citg 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-sn 4577 df-pr 4579 df-uni 4860 df-iota 6437 df-sum 15591 df-itg 25549 |
| This theorem is referenced by: ditgex 25778 ftc1lem1 25967 itgulm 26342 dmarea 26892 dfarea 26895 areaval 26899 ftc1anc 37740 itgsinexp 45992 wallispilem1 46102 wallispilem2 46103 |
| Copyright terms: Public domain | W3C validator |