![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version |
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg 25677 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
2 | sumex 15736 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⦋csb 3921 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ici 11186 · cmul 11189 ≤ cle 11325 / cdiv 11947 3c3 12349 ...cfz 13567 ↑cexp 14112 ℜcre 15146 Σcsu 15734 ∫2citg2 25670 ∫citg 25672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-sum 15735 df-itg 25677 |
This theorem is referenced by: ditgex 25907 ftc1lem1 26096 itgulm 26469 dmarea 27018 dfarea 27021 areaval 27025 ftc1anc 37661 itgsinexp 45876 wallispilem1 45986 wallispilem2 45987 |
Copyright terms: Public domain | W3C validator |