Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version |
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg 24692 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
2 | sumex 15327 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⦋csb 3828 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 ici 10804 · cmul 10807 ≤ cle 10941 / cdiv 11562 3c3 11959 ...cfz 13168 ↑cexp 13710 ℜcre 14736 Σcsu 15325 ∫2citg2 24685 ∫citg 24687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-sum 15326 df-itg 24692 |
This theorem is referenced by: ditgex 24921 ftc1lem1 25104 itgulm 25472 dmarea 26012 dfarea 26015 areaval 26019 ftc1anc 35785 itgsinexp 43386 wallispilem1 43496 wallispilem2 43497 |
Copyright terms: Public domain | W3C validator |