| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version | ||
| Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25540 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 2 | sumex 15613 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⦋csb 3853 ifcif 4478 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 0cc0 11028 ici 11030 · cmul 11033 ≤ cle 11169 / cdiv 11795 3c3 12202 ...cfz 13428 ↑cexp 13986 ℜcre 15022 Σcsu 15611 ∫2citg2 25533 ∫citg 25535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-sum 15612 df-itg 25540 |
| This theorem is referenced by: ditgex 25769 ftc1lem1 25958 itgulm 26333 dmarea 26883 dfarea 26886 areaval 26890 ftc1anc 37680 itgsinexp 45937 wallispilem1 46047 wallispilem2 46048 |
| Copyright terms: Public domain | W3C validator |