MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgex Structured version   Visualization version   GIF version

Theorem itgex 24963
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgex 𝐴𝐵 d𝑥 ∈ V

Proof of Theorem itgex
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 24815 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 sumex 15427 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V
31, 2eqeltri 2830 1 𝐴𝐵 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2101  Vcvv 3434  csb 3834  ifcif 4462   class class class wbr 5077  cmpt 5160  cfv 6447  (class class class)co 7295  cr 10898  0cc0 10899  ici 10901   · cmul 10904  cle 11038   / cdiv 11660  3c3 12057  ...cfz 13267  cexp 13810  cre 14836  Σcsu 15425  2citg2 24808  citg 24810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2939  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-sn 4565  df-pr 4567  df-uni 4842  df-iota 6399  df-sum 15426  df-itg 24815
This theorem is referenced by:  ditgex  25044  ftc1lem1  25227  itgulm  25595  dmarea  26135  dfarea  26138  areaval  26142  ftc1anc  35886  itgsinexp  43531  wallispilem1  43641  wallispilem2  43642
  Copyright terms: Public domain W3C validator