MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgex Structured version   Visualization version   GIF version

Theorem itgex 25741
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgex 𝐴𝐵 d𝑥 ∈ V

Proof of Theorem itgex
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 25594 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 sumex 15706 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V
31, 2eqeltri 2829 1 𝐴𝐵 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  Vcvv 3463  csb 3879  ifcif 4505   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  ici 11139   · cmul 11142  cle 11278   / cdiv 11902  3c3 12304  ...cfz 13529  cexp 14084  cre 15118  Σcsu 15704  2citg2 25587  citg 25589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888  df-iota 6494  df-sum 15705  df-itg 25594
This theorem is referenced by:  ditgex  25823  ftc1lem1  26012  itgulm  26387  dmarea  26936  dfarea  26939  areaval  26943  ftc1anc  37667  itgsinexp  45927  wallispilem1  46037  wallispilem2  46038
  Copyright terms: Public domain W3C validator