| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version | ||
| Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg 25531 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
| 2 | sumex 15661 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
| 3 | 1, 2 | eqeltri 2825 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⦋csb 3865 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 0cc0 11075 ici 11077 · cmul 11080 ≤ cle 11216 / cdiv 11842 3c3 12249 ...cfz 13475 ↑cexp 14033 ℜcre 15070 Σcsu 15659 ∫2citg2 25524 ∫citg 25526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-sn 4593 df-pr 4595 df-uni 4875 df-iota 6467 df-sum 15660 df-itg 25531 |
| This theorem is referenced by: ditgex 25760 ftc1lem1 25949 itgulm 26324 dmarea 26874 dfarea 26877 areaval 26881 ftc1anc 37702 itgsinexp 45960 wallispilem1 46070 wallispilem2 46071 |
| Copyright terms: Public domain | W3C validator |