MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgex Structured version   Visualization version   GIF version

Theorem itgex 24668
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
itgex 𝐴𝐵 d𝑥 ∈ V

Proof of Theorem itgex
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 24520 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
2 sumex 15251 . 2 Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V
31, 2eqeltri 2834 1 𝐴𝐵 d𝑥 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 399  wcel 2110  Vcvv 3408  csb 3811  ifcif 4439   class class class wbr 5053  cmpt 5135  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  ici 10731   · cmul 10734  cle 10868   / cdiv 11489  3c3 11886  ...cfz 13095  cexp 13635  cre 14660  Σcsu 15249  2citg2 24513  citg 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-sn 4542  df-pr 4544  df-uni 4820  df-iota 6338  df-sum 15250  df-itg 24520
This theorem is referenced by:  ditgex  24749  ftc1lem1  24932  itgulm  25300  dmarea  25840  dfarea  25843  areaval  25847  ftc1anc  35595  itgsinexp  43171  wallispilem1  43281  wallispilem2  43282
  Copyright terms: Public domain W3C validator