Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgex | Structured version Visualization version GIF version |
Description: An integral is a set. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itgex | ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-itg 24815 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | |
2 | sumex 15427 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) ∈ V | |
3 | 1, 2 | eqeltri 2830 | 1 ⊢ ∫𝐴𝐵 d𝑥 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2101 Vcvv 3434 ⦋csb 3834 ifcif 4462 class class class wbr 5077 ↦ cmpt 5160 ‘cfv 6447 (class class class)co 7295 ℝcr 10898 0cc0 10899 ici 10901 · cmul 10904 ≤ cle 11038 / cdiv 11660 3c3 12057 ...cfz 13267 ↑cexp 13810 ℜcre 14836 Σcsu 15425 ∫2citg2 24808 ∫citg 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-sn 4565 df-pr 4567 df-uni 4842 df-iota 6399 df-sum 15426 df-itg 24815 |
This theorem is referenced by: ditgex 25044 ftc1lem1 25227 itgulm 25595 dmarea 26135 dfarea 26138 areaval 26142 ftc1anc 35886 itgsinexp 43531 wallispilem1 43641 wallispilem2 43642 |
Copyright terms: Public domain | W3C validator |