| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-lmd | Structured version Visualization version GIF version | ||
| Description: A diagram of type 𝐷 or a
𝐷-shaped diagram in a category 𝐶,
is a functor 𝐹:𝐷⟶𝐶 where the source category 𝐷,
usually
small or even finite, is called the index category or the scheme of the
diagram. The actual objects and morphisms in 𝐷 are largely
irrelevant; only the way in which they are interrelated matters. The
diagram is thought of as indexing a collection of objects and morphisms
in 𝐶 patterned on 𝐷. Definition 11.1(1) of
[Adamek] p. 193.
A cone to a diagram, or a natural source for a diagram in a category 𝐶 is a pair of an object 𝑋 in 𝐶 and a natural transformation from the constant functor (or constant diagram) of the object 𝑋 to the diagram. The second component associates each object in the index category with a morphism in 𝐶 whose domain is 𝑋 (concl 49479). The naturality guarantees that the combination of the diagram with the cone must commute (concom 49481). Definition 11.3(1) of [Adamek] p. 193. A limit of a diagram 𝐹:𝐷⟶𝐶 of type 𝐷 in category 𝐶 is a universal pair from the diagonal functor (𝐶Δfunc𝐷) to the diagram. The universal pair is a cone to the diagram satisfying the universal property, that each cone to the diagram uniquely factors through the limit (islmd 49483). Definition 11.3(2) of [Adamek] p. 194. Terminal objects, products, equalizers, pullbacks, and inverse limits can be considered as limits of some diagram; limits can be further generalized as right Kan extensions (df-ran 49433). "lmd" is short for "limit of a diagram". See df-cmd 49468 for the dual concept. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-lmd | ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmd 49465 | . 2 class Limit | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | vd | . . 3 setvar 𝑑 | |
| 4 | cvv 3459 | . . 3 class V | |
| 5 | vf | . . . 4 setvar 𝑓 | |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑑 |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑐 |
| 8 | cfunc 17865 | . . . . 5 class Func | |
| 9 | 6, 7, 8 | co 7403 | . . . 4 class (𝑑 Func 𝑐) |
| 10 | cdiag 18222 | . . . . . . 7 class Δfunc | |
| 11 | 7, 6, 10 | co 7403 | . . . . . 6 class (𝑐Δfunc𝑑) |
| 12 | coppf 49019 | . . . . . 6 class oppFunc | |
| 13 | 11, 12 | cfv 6530 | . . . . 5 class (oppFunc‘(𝑐Δfunc𝑑)) |
| 14 | 5 | cv 1539 | . . . . 5 class 𝑓 |
| 15 | coppc 17721 | . . . . . . 7 class oppCat | |
| 16 | 7, 15 | cfv 6530 | . . . . . 6 class (oppCat‘𝑐) |
| 17 | cfuc 17956 | . . . . . . . 8 class FuncCat | |
| 18 | 6, 7, 17 | co 7403 | . . . . . . 7 class (𝑑 FuncCat 𝑐) |
| 19 | 18, 15 | cfv 6530 | . . . . . 6 class (oppCat‘(𝑑 FuncCat 𝑐)) |
| 20 | cup 49056 | . . . . . 6 class UP | |
| 21 | 16, 19, 20 | co 7403 | . . . . 5 class ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐))) |
| 22 | 13, 14, 21 | co 7403 | . . . 4 class ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓) |
| 23 | 5, 9, 22 | cmpt 5201 | . . 3 class (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)) |
| 24 | 2, 3, 4, 4, 23 | cmpo 7405 | . 2 class (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) |
| 25 | 1, 24 | wceq 1540 | 1 wff Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmlmd 49469 lmdfval 49471 |
| Copyright terms: Public domain | W3C validator |