Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lmd Structured version   Visualization version   GIF version

Definition df-lmd 49467
Description: A diagram of type 𝐷 or a 𝐷-shaped diagram in a category 𝐶, is a functor 𝐹:𝐷𝐶 where the source category 𝐷, usually small or even finite, is called the index category or the scheme of the diagram. The actual objects and morphisms in 𝐷 are largely irrelevant; only the way in which they are interrelated matters. The diagram is thought of as indexing a collection of objects and morphisms in 𝐶 patterned on 𝐷. Definition 11.1(1) of [Adamek] p. 193.

A cone to a diagram, or a natural source for a diagram in a category 𝐶 is a pair of an object 𝑋 in 𝐶 and a natural transformation from the constant functor (or constant diagram) of the object 𝑋 to the diagram. The second component associates each object in the index category with a morphism in 𝐶 whose domain is 𝑋 (concl 49479). The naturality guarantees that the combination of the diagram with the cone must commute (concom 49481). Definition 11.3(1) of [Adamek] p. 193.

A limit of a diagram 𝐹:𝐷𝐶 of type 𝐷 in category 𝐶 is a universal pair from the diagonal functor (𝐶Δfunc𝐷) to the diagram. The universal pair is a cone to the diagram satisfying the universal property, that each cone to the diagram uniquely factors through the limit (islmd 49483). Definition 11.3(2) of [Adamek] p. 194.

Terminal objects, products, equalizers, pullbacks, and inverse limits can be considered as limits of some diagram; limits can be further generalized as right Kan extensions (df-ran 49433).

"lmd" is short for "limit of a diagram". See df-cmd 49468 for the dual concept. (Contributed by Zhi Wang, 12-Nov-2025.)

Assertion
Ref Expression
df-lmd Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
Distinct variable group:   𝑐,𝑑,𝑓

Detailed syntax breakdown of Definition df-lmd
StepHypRef Expression
1 clmd 49465 . 2 class Limit
2 vc . . 3 setvar 𝑐
3 vd . . 3 setvar 𝑑
4 cvv 3459 . . 3 class V
5 vf . . . 4 setvar 𝑓
63cv 1539 . . . . 5 class 𝑑
72cv 1539 . . . . 5 class 𝑐
8 cfunc 17865 . . . . 5 class Func
96, 7, 8co 7403 . . . 4 class (𝑑 Func 𝑐)
10 cdiag 18222 . . . . . . 7 class Δfunc
117, 6, 10co 7403 . . . . . 6 class (𝑐Δfunc𝑑)
12 coppf 49019 . . . . . 6 class oppFunc
1311, 12cfv 6530 . . . . 5 class (oppFunc‘(𝑐Δfunc𝑑))
145cv 1539 . . . . 5 class 𝑓
15 coppc 17721 . . . . . . 7 class oppCat
167, 15cfv 6530 . . . . . 6 class (oppCat‘𝑐)
17 cfuc 17956 . . . . . . . 8 class FuncCat
186, 7, 17co 7403 . . . . . . 7 class (𝑑 FuncCat 𝑐)
1918, 15cfv 6530 . . . . . 6 class (oppCat‘(𝑑 FuncCat 𝑐))
20 cup 49056 . . . . . 6 class UP
2116, 19, 20co 7403 . . . . 5 class ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))
2213, 14, 21co 7403 . . . 4 class ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)
235, 9, 22cmpt 5201 . . 3 class (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))
242, 3, 4, 4, 23cmpo 7405 . 2 class (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
251, 24wceq 1540 1 wff Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmlmd  49469  lmdfval  49471
  Copyright terms: Public domain W3C validator