Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdfval Structured version   Visualization version   GIF version

Theorem lmdfval 49755
Description: Function value of Limit. (Contributed by Zhi Wang, 14-Nov-2025.)
Assertion
Ref Expression
lmdfval (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓

Proof of Theorem lmdfval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
2 simpl 482 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
31, 2oveq12d 7370 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶))
42fveq2d 6832 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘𝑐) = (oppCat‘𝐶))
51, 2oveq12d 7370 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶))
65fveq2d 6832 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑐)) = (oppCat‘(𝐷 FuncCat 𝐶)))
74, 6oveq12d 7370 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶))))
8 oveq12 7361 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷))
98fveq2d 6832 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ( oppFunc ‘(𝑐Δfunc𝑑)) = ( oppFunc ‘(𝐶Δfunc𝐷)))
10 eqidd 2732 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑓 = 𝑓)
117, 9, 10oveq123d 7373 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
123, 11mpteq12dv 5180 . . 3 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
13 df-lmd 49751 . . 3 Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
14 ovex 7385 . . . 4 (𝐷 Func 𝐶) ∈ V
1514mptex 7163 . . 3 (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) ∈ V
1612, 13, 15ovmpoa 7507 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
17 reldmlmd 49753 . . . 4 Rel dom Limit
1817ovprc 7390 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = ∅)
19 ancom 460 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V))
20 reldmfunc 49181 . . . . . . 7 Rel dom Func
2120ovprc 7390 . . . . . 6 (¬ (𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅)
2219, 21sylnbi 330 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅)
2322mpteq1d 5183 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = (𝑓 ∈ ∅ ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
24 mpt0 6629 . . . 4 (𝑓 ∈ ∅ ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅
2523, 24eqtrdi 2782 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅)
2618, 25eqtr4d 2769 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
2716, 26pm2.61i 182 1 (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4282  cmpt 5174  cfv 6487  (class class class)co 7352  oppCatcoppc 17623   Func cfunc 17767   FuncCat cfuc 17858  Δfunccdiag 18124   oppFunc coppf 49228   UP cup 49279   Limit clmd 49749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-func 17771  df-lmd 49751
This theorem is referenced by:  lmdrcl  49757  reldmlmd2  49759  lmdfval2  49761  lmdpropd  49763
  Copyright terms: Public domain W3C validator