Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdfval Structured version   Visualization version   GIF version

Theorem lmdfval 49471
Description: Function value of Limit. (Contributed by Zhi Wang, 14-Nov-2025.)
Assertion
Ref Expression
lmdfval (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓

Proof of Theorem lmdfval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
2 simpl 482 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
31, 2oveq12d 7421 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶))
42fveq2d 6879 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘𝑐) = (oppCat‘𝐶))
51, 2oveq12d 7421 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶))
65fveq2d 6879 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑐)) = (oppCat‘(𝐷 FuncCat 𝐶)))
74, 6oveq12d 7421 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶))))
8 oveq12 7412 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷))
98fveq2d 6879 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppFunc‘(𝑐Δfunc𝑑)) = (oppFunc‘(𝐶Δfunc𝐷)))
10 eqidd 2736 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑓 = 𝑓)
117, 9, 10oveq123d 7424 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
123, 11mpteq12dv 5207 . . 3 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
13 df-lmd 49467 . . 3 Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
14 ovex 7436 . . . 4 (𝐷 Func 𝐶) ∈ V
1514mptex 7214 . . 3 (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) ∈ V
1612, 13, 15ovmpoa 7560 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
17 reldmlmd 49469 . . . 4 Rel dom Limit
1817ovprc 7441 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = ∅)
19 ancom 460 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V))
20 reldmfunc 48990 . . . . . . 7 Rel dom Func
2120ovprc 7441 . . . . . 6 (¬ (𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅)
2219, 21sylnbi 330 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅)
2322mpteq1d 5210 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = (𝑓 ∈ ∅ ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
24 mpt0 6679 . . . 4 (𝑓 ∈ ∅ ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅
2523, 24eqtrdi 2786 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅)
2618, 25eqtr4d 2773 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
2716, 26pm2.61i 182 1 (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cmpt 5201  cfv 6530  (class class class)co 7403  oppCatcoppc 17721   Func cfunc 17865   FuncCat cfuc 17956  Δfunccdiag 18222  oppFunccoppf 49019   UP cup 49056   Limit clmd 49465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-func 17869  df-lmd 49467
This theorem is referenced by:  reldmlmd2  49473  lmdfval2  49475
  Copyright terms: Public domain W3C validator