| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
| 2 | | simpl 482 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) |
| 3 | 1, 2 | oveq12d 7421 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶)) |
| 4 | 2 | fveq2d 6879 |
. . . . . 6
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
| 5 | 1, 2 | oveq12d 7421 |
. . . . . . 7
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶)) |
| 6 | 5 | fveq2d 6879 |
. . . . . 6
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑐)) = (oppCat‘(𝐷 FuncCat 𝐶))) |
| 7 | 4, 6 | oveq12d 7421 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))) |
| 8 | | oveq12 7412 |
. . . . . 6
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷)) |
| 9 | 8 | fveq2d 6879 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (oppFunc‘(𝑐Δfunc𝑑)) = (oppFunc‘(𝐶Δfunc𝐷))) |
| 10 | | eqidd 2736 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑓 = 𝑓) |
| 11 | 7, 9, 10 | oveq123d 7424 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) |
| 12 | 3, 11 | mpteq12dv 5207 |
. . 3
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))) |
| 13 | | df-lmd 49467 |
. . 3
⊢ Limit =
(𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) |
| 14 | | ovex 7436 |
. . . 4
⊢ (𝐷 Func 𝐶) ∈ V |
| 15 | 14 | mptex 7214 |
. . 3
⊢ (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) ∈ V |
| 16 | 12, 13, 15 | ovmpoa 7560 |
. 2
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))) |
| 17 | | reldmlmd 49469 |
. . . 4
⊢ Rel dom
Limit |
| 18 | 17 | ovprc 7441 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = ∅) |
| 19 | | ancom 460 |
. . . . . 6
⊢ ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V)) |
| 20 | | reldmfunc 48990 |
. . . . . . 7
⊢ Rel dom
Func |
| 21 | 20 | ovprc 7441 |
. . . . . 6
⊢ (¬
(𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅) |
| 22 | 19, 21 | sylnbi 330 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅) |
| 23 | 22 | mpteq1d 5210 |
. . . 4
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = (𝑓 ∈ ∅ ↦
((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))) |
| 24 | | mpt0 6679 |
. . . 4
⊢ (𝑓 ∈ ∅ ↦
((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅ |
| 25 | 23, 24 | eqtrdi 2786 |
. . 3
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅) |
| 26 | 18, 25 | eqtr4d 2773 |
. 2
⊢ (¬
(𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))) |
| 27 | 16, 26 | pm2.61i 182 |
1
⊢ (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) |