Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdfval Structured version   Visualization version   GIF version

Theorem lmdfval 49642
Description: Function value of Limit. (Contributed by Zhi Wang, 14-Nov-2025.)
Assertion
Ref Expression
lmdfval (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Distinct variable groups:   𝐶,𝑓   𝐷,𝑓

Proof of Theorem lmdfval
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑑 = 𝐷)
2 simpl 482 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑐 = 𝐶)
31, 2oveq12d 7408 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 Func 𝑐) = (𝐷 Func 𝐶))
42fveq2d 6865 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘𝑐) = (oppCat‘𝐶))
51, 2oveq12d 7408 . . . . . . 7 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑑 FuncCat 𝑐) = (𝐷 FuncCat 𝐶))
65fveq2d 6865 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (oppCat‘(𝑑 FuncCat 𝑐)) = (oppCat‘(𝐷 FuncCat 𝐶)))
74, 6oveq12d 7408 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐))) = ((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶))))
8 oveq12 7399 . . . . . 6 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑐Δfunc𝑑) = (𝐶Δfunc𝐷))
98fveq2d 6865 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → ( oppFunc ‘(𝑐Δfunc𝑑)) = ( oppFunc ‘(𝐶Δfunc𝐷)))
10 eqidd 2731 . . . . 5 ((𝑐 = 𝐶𝑑 = 𝐷) → 𝑓 = 𝑓)
117, 9, 10oveq123d 7411 . . . 4 ((𝑐 = 𝐶𝑑 = 𝐷) → (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
123, 11mpteq12dv 5197 . . 3 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
13 df-lmd 49638 . . 3 Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
14 ovex 7423 . . . 4 (𝐷 Func 𝐶) ∈ V
1514mptex 7200 . . 3 (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) ∈ V
1612, 13, 15ovmpoa 7547 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
17 reldmlmd 49640 . . . 4 Rel dom Limit
1817ovprc 7428 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = ∅)
19 ancom 460 . . . . . 6 ((𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (𝐷 ∈ V ∧ 𝐶 ∈ V))
20 reldmfunc 49068 . . . . . . 7 Rel dom Func
2120ovprc 7428 . . . . . 6 (¬ (𝐷 ∈ V ∧ 𝐶 ∈ V) → (𝐷 Func 𝐶) = ∅)
2219, 21sylnbi 330 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐷 Func 𝐶) = ∅)
2322mpteq1d 5200 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = (𝑓 ∈ ∅ ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
24 mpt0 6663 . . . 4 (𝑓 ∈ ∅ ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅
2523, 24eqtrdi 2781 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)) = ∅)
2618, 25eqtr4d 2768 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓)))
2716, 26pm2.61i 182 1 (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cmpt 5191  cfv 6514  (class class class)co 7390  oppCatcoppc 17679   Func cfunc 17823   FuncCat cfuc 17914  Δfunccdiag 18180   oppFunc coppf 49115   UP cup 49166   Limit clmd 49636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-func 17827  df-lmd 49638
This theorem is referenced by:  lmdrcl  49644  reldmlmd2  49646  lmdfval2  49648  lmdpropd  49650
  Copyright terms: Public domain W3C validator