| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ran | Structured version Visualization version GIF version | ||
| Description: Definition of the (local) right Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) consists of right Kan extensions of
𝑋 along 𝐹, which are universal pairs from the pre-composition
functor given by 𝐹 to 𝑋 (ranval2 49612). The definition in
§
3 of Chapter X in p. 236 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49612 (retrieved
3 Nov 2025).
A right Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (ranrcl4 49621) and the second component is a natural transformation 𝐴:𝐿𝐹⟶𝑋 (ranrcl5 49622) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-lan 49589 for the dual concept. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-ran | ⊢ Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cran 49588 | . 2 class Ran | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3444 | . . . 4 class V | |
| 5 | 4, 4 | cxp 5629 | . . 3 class (V × V) |
| 6 | vc | . . . 4 setvar 𝑐 | |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 8 | c1st 7945 | . . . . 5 class 1st | |
| 9 | 7, 8 | cfv 6499 | . . . 4 class (1st ‘𝑝) |
| 10 | vd | . . . . 5 setvar 𝑑 | |
| 11 | c2nd 7946 | . . . . . 6 class 2nd | |
| 12 | 7, 11 | cfv 6499 | . . . . 5 class (2nd ‘𝑝) |
| 13 | vf | . . . . . 6 setvar 𝑓 | |
| 14 | vx | . . . . . 6 setvar 𝑥 | |
| 15 | 6 | cv 1539 | . . . . . . 7 class 𝑐 |
| 16 | 10 | cv 1539 | . . . . . . 7 class 𝑑 |
| 17 | cfunc 17796 | . . . . . . 7 class Func | |
| 18 | 15, 16, 17 | co 7369 | . . . . . 6 class (𝑐 Func 𝑑) |
| 19 | 3 | cv 1539 | . . . . . . 7 class 𝑒 |
| 20 | 15, 19, 17 | co 7369 | . . . . . 6 class (𝑐 Func 𝑒) |
| 21 | 16, 19 | cop 4591 | . . . . . . . . 9 class 〈𝑑, 𝑒〉 |
| 22 | 13 | cv 1539 | . . . . . . . . 9 class 𝑓 |
| 23 | cprcof 49355 | . . . . . . . . 9 class −∘F | |
| 24 | 21, 22, 23 | co 7369 | . . . . . . . 8 class (〈𝑑, 𝑒〉 −∘F 𝑓) |
| 25 | coppf 49104 | . . . . . . . 8 class oppFunc | |
| 26 | 24, 25 | cfv 6499 | . . . . . . 7 class ( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓)) |
| 27 | 14 | cv 1539 | . . . . . . 7 class 𝑥 |
| 28 | cfuc 17887 | . . . . . . . . . 10 class FuncCat | |
| 29 | 16, 19, 28 | co 7369 | . . . . . . . . 9 class (𝑑 FuncCat 𝑒) |
| 30 | coppc 17652 | . . . . . . . . 9 class oppCat | |
| 31 | 29, 30 | cfv 6499 | . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒)) |
| 32 | 15, 19, 28 | co 7369 | . . . . . . . . 9 class (𝑐 FuncCat 𝑒) |
| 33 | 32, 30 | cfv 6499 | . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒)) |
| 34 | cup 49155 | . . . . . . . 8 class UP | |
| 35 | 31, 33, 34 | co 7369 | . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒))) |
| 36 | 26, 27, 35 | co 7369 | . . . . . 6 class (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥) |
| 37 | 13, 14, 18, 20, 36 | cmpo 7371 | . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 38 | 10, 12, 37 | csb 3859 | . . . 4 class ⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 39 | 6, 9, 38 | csb 3859 | . . 3 class ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 40 | 2, 3, 5, 4, 39 | cmpo 7371 | . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| 41 | 1, 40 | wceq 1540 | 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ranfn 49592 reldmran 49594 ranfval 49596 relran 49606 |
| Copyright terms: Public domain | W3C validator |