Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ran Structured version   Visualization version   GIF version

Definition df-ran 49603
Description: Definition of the (local) right Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) consists of right Kan extensions of 𝑋 along 𝐹, which are universal pairs from the pre-composition functor given by 𝐹 to 𝑋 (ranval2 49625). The definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49625 (retrieved 3 Nov 2025).

A right Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (ranrcl4 49634) and the second component is a natural transformation 𝐴:𝐿𝐹𝑋 (ranrcl5 49635) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-lan 49602 for the dual concept.

(Contributed by Zhi Wang, 4-Nov-2025.)

Assertion
Ref Expression
df-ran Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-ran
StepHypRef Expression
1 cran 49601 . 2 class Ran
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . . 4 class V
54, 4cxp 5617 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1539 . . . . 5 class 𝑝
8 c1st 7922 . . . . 5 class 1st
97, 8cfv 6482 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7923 . . . . . 6 class 2nd
127, 11cfv 6482 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1539 . . . . . . 7 class 𝑐
1610cv 1539 . . . . . . 7 class 𝑑
17 cfunc 17761 . . . . . . 7 class Func
1815, 16, 17co 7349 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1539 . . . . . . 7 class 𝑒
2015, 19, 17co 7349 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4583 . . . . . . . . 9 class 𝑑, 𝑒
2213cv 1539 . . . . . . . . 9 class 𝑓
23 cprcof 49368 . . . . . . . . 9 class −∘F
2421, 22, 23co 7349 . . . . . . . 8 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
25 coppf 49117 . . . . . . . 8 class oppFunc
2624, 25cfv 6482 . . . . . . 7 class ( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))
2714cv 1539 . . . . . . 7 class 𝑥
28 cfuc 17852 . . . . . . . . . 10 class FuncCat
2916, 19, 28co 7349 . . . . . . . . 9 class (𝑑 FuncCat 𝑒)
30 coppc 17617 . . . . . . . . 9 class oppCat
3129, 30cfv 6482 . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒))
3215, 19, 28co 7349 . . . . . . . . 9 class (𝑐 FuncCat 𝑒)
3332, 30cfv 6482 . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒))
34 cup 49168 . . . . . . . 8 class UP
3531, 33, 34co 7349 . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))
3626, 27, 35co 7349 . . . . . 6 class (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)
3713, 14, 18, 20, 36cmpo 7351 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
3810, 12, 37csb 3851 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
396, 9, 38csb 3851 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
402, 3, 5, 4, 39cmpo 7351 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
411, 40wceq 1540 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ranfn  49605  reldmran  49607  ranfval  49609  relran  49619
  Copyright terms: Public domain W3C validator