| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-ran | Structured version Visualization version GIF version | ||
| Description: Definition of the (local) right Kan extension. Given a functor
𝐹:𝐶⟶𝐷 and a functor 𝑋:𝐶⟶𝐸, the set
(𝐹(〈𝐶, 𝐷〉 Ran 𝐸)𝑋) consists of right Kan extensions of
𝑋 along 𝐹, which are universal pairs from the pre-composition
functor given by 𝐹 to 𝑋 (ranval2 49609). The definition in
§
3 of Chapter X in p. 236 of Mac Lane, Saunders,
Categories for the Working Mathematician, 2nd Edition, Springer
Science+Business Media, New York, (1998) [QA169.M33 1998]; available at
https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49609 (retrieved
3 Nov 2025).
A right Kan extension is in the form of 〈𝐿, 𝐴〉 where the first component is a functor 𝐿:𝐷⟶𝐸 (ranrcl4 49618) and the second component is a natural transformation 𝐴:𝐿𝐹⟶𝑋 (ranrcl5 49619) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶⟶𝐸 is "extended" along 𝐹:𝐶⟶𝐷. The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory". This definition was chosen over the other version in the commented out section due to its better reverse closure property. See df-lan 49586 for the dual concept. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-ran | ⊢ Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cran 49585 | . 2 class Ran | |
| 2 | vp | . . 3 setvar 𝑝 | |
| 3 | ve | . . 3 setvar 𝑒 | |
| 4 | cvv 3450 | . . . 4 class V | |
| 5 | 4, 4 | cxp 5638 | . . 3 class (V × V) |
| 6 | vc | . . . 4 setvar 𝑐 | |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑝 |
| 8 | c1st 7968 | . . . . 5 class 1st | |
| 9 | 7, 8 | cfv 6513 | . . . 4 class (1st ‘𝑝) |
| 10 | vd | . . . . 5 setvar 𝑑 | |
| 11 | c2nd 7969 | . . . . . 6 class 2nd | |
| 12 | 7, 11 | cfv 6513 | . . . . 5 class (2nd ‘𝑝) |
| 13 | vf | . . . . . 6 setvar 𝑓 | |
| 14 | vx | . . . . . 6 setvar 𝑥 | |
| 15 | 6 | cv 1539 | . . . . . . 7 class 𝑐 |
| 16 | 10 | cv 1539 | . . . . . . 7 class 𝑑 |
| 17 | cfunc 17822 | . . . . . . 7 class Func | |
| 18 | 15, 16, 17 | co 7389 | . . . . . 6 class (𝑐 Func 𝑑) |
| 19 | 3 | cv 1539 | . . . . . . 7 class 𝑒 |
| 20 | 15, 19, 17 | co 7389 | . . . . . 6 class (𝑐 Func 𝑒) |
| 21 | 16, 19 | cop 4597 | . . . . . . . . 9 class 〈𝑑, 𝑒〉 |
| 22 | 13 | cv 1539 | . . . . . . . . 9 class 𝑓 |
| 23 | cprcof 49352 | . . . . . . . . 9 class −∘F | |
| 24 | 21, 22, 23 | co 7389 | . . . . . . . 8 class (〈𝑑, 𝑒〉 −∘F 𝑓) |
| 25 | coppf 49101 | . . . . . . . 8 class oppFunc | |
| 26 | 24, 25 | cfv 6513 | . . . . . . 7 class ( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓)) |
| 27 | 14 | cv 1539 | . . . . . . 7 class 𝑥 |
| 28 | cfuc 17913 | . . . . . . . . . 10 class FuncCat | |
| 29 | 16, 19, 28 | co 7389 | . . . . . . . . 9 class (𝑑 FuncCat 𝑒) |
| 30 | coppc 17678 | . . . . . . . . 9 class oppCat | |
| 31 | 29, 30 | cfv 6513 | . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒)) |
| 32 | 15, 19, 28 | co 7389 | . . . . . . . . 9 class (𝑐 FuncCat 𝑒) |
| 33 | 32, 30 | cfv 6513 | . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒)) |
| 34 | cup 49152 | . . . . . . . 8 class UP | |
| 35 | 31, 33, 34 | co 7389 | . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒))) |
| 36 | 26, 27, 35 | co 7389 | . . . . . 6 class (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥) |
| 37 | 13, 14, 18, 20, 36 | cmpo 7391 | . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 38 | 10, 12, 37 | csb 3864 | . . . 4 class ⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 39 | 6, 9, 38 | csb 3864 | . . 3 class ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)) |
| 40 | 2, 3, 5, 4, 39 | cmpo 7391 | . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| 41 | 1, 40 | wceq 1540 | 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ ⦋(1st ‘𝑝) / 𝑐⦌⦋(2nd ‘𝑝) / 𝑑⦌(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(〈𝑑, 𝑒〉 −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ranfn 49589 reldmran 49591 ranfval 49593 relran 49603 |
| Copyright terms: Public domain | W3C validator |