Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ran Structured version   Visualization version   GIF version

Definition df-ran 49719
Description: Definition of the (local) right Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) consists of right Kan extensions of 𝑋 along 𝐹, which are universal pairs from the pre-composition functor given by 𝐹 to 𝑋 (ranval2 49741). The definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49741 (retrieved 3 Nov 2025).

A right Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (ranrcl4 49750) and the second component is a natural transformation 𝐴:𝐿𝐹𝑋 (ranrcl5 49751) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-lan 49718 for the dual concept.

(Contributed by Zhi Wang, 4-Nov-2025.)

Assertion
Ref Expression
df-ran Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-ran
StepHypRef Expression
1 cran 49717 . 2 class Ran
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3436 . . . 4 class V
54, 4cxp 5612 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1540 . . . . 5 class 𝑝
8 c1st 7919 . . . . 5 class 1st
97, 8cfv 6481 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7920 . . . . . 6 class 2nd
127, 11cfv 6481 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1540 . . . . . . 7 class 𝑐
1610cv 1540 . . . . . . 7 class 𝑑
17 cfunc 17761 . . . . . . 7 class Func
1815, 16, 17co 7346 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1540 . . . . . . 7 class 𝑒
2015, 19, 17co 7346 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4579 . . . . . . . . 9 class 𝑑, 𝑒
2213cv 1540 . . . . . . . . 9 class 𝑓
23 cprcof 49484 . . . . . . . . 9 class −∘F
2421, 22, 23co 7346 . . . . . . . 8 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
25 coppf 49233 . . . . . . . 8 class oppFunc
2624, 25cfv 6481 . . . . . . 7 class ( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))
2714cv 1540 . . . . . . 7 class 𝑥
28 cfuc 17852 . . . . . . . . . 10 class FuncCat
2916, 19, 28co 7346 . . . . . . . . 9 class (𝑑 FuncCat 𝑒)
30 coppc 17617 . . . . . . . . 9 class oppCat
3129, 30cfv 6481 . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒))
3215, 19, 28co 7346 . . . . . . . . 9 class (𝑐 FuncCat 𝑒)
3332, 30cfv 6481 . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒))
34 cup 49284 . . . . . . . 8 class UP
3531, 33, 34co 7346 . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))
3626, 27, 35co 7346 . . . . . 6 class (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)
3713, 14, 18, 20, 36cmpo 7348 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
3810, 12, 37csb 3845 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
396, 9, 38csb 3845 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
402, 3, 5, 4, 39cmpo 7348 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
411, 40wceq 1541 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ranfn  49721  reldmran  49723  ranfval  49725  relran  49735
  Copyright terms: Public domain W3C validator