Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ran Structured version   Visualization version   GIF version

Definition df-ran 49587
Description: Definition of the (local) right Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) consists of right Kan extensions of 𝑋 along 𝐹, which are universal pairs from the pre-composition functor given by 𝐹 to 𝑋 (ranval2 49609). The definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49609 (retrieved 3 Nov 2025).

A right Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (ranrcl4 49618) and the second component is a natural transformation 𝐴:𝐿𝐹𝑋 (ranrcl5 49619) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-lan 49586 for the dual concept.

(Contributed by Zhi Wang, 4-Nov-2025.)

Assertion
Ref Expression
df-ran Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-ran
StepHypRef Expression
1 cran 49585 . 2 class Ran
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3450 . . . 4 class V
54, 4cxp 5638 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1539 . . . . 5 class 𝑝
8 c1st 7968 . . . . 5 class 1st
97, 8cfv 6513 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7969 . . . . . 6 class 2nd
127, 11cfv 6513 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1539 . . . . . . 7 class 𝑐
1610cv 1539 . . . . . . 7 class 𝑑
17 cfunc 17822 . . . . . . 7 class Func
1815, 16, 17co 7389 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1539 . . . . . . 7 class 𝑒
2015, 19, 17co 7389 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4597 . . . . . . . . 9 class 𝑑, 𝑒
2213cv 1539 . . . . . . . . 9 class 𝑓
23 cprcof 49352 . . . . . . . . 9 class −∘F
2421, 22, 23co 7389 . . . . . . . 8 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
25 coppf 49101 . . . . . . . 8 class oppFunc
2624, 25cfv 6513 . . . . . . 7 class ( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))
2714cv 1539 . . . . . . 7 class 𝑥
28 cfuc 17913 . . . . . . . . . 10 class FuncCat
2916, 19, 28co 7389 . . . . . . . . 9 class (𝑑 FuncCat 𝑒)
30 coppc 17678 . . . . . . . . 9 class oppCat
3129, 30cfv 6513 . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒))
3215, 19, 28co 7389 . . . . . . . . 9 class (𝑐 FuncCat 𝑒)
3332, 30cfv 6513 . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒))
34 cup 49152 . . . . . . . 8 class UP
3531, 33, 34co 7389 . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))
3626, 27, 35co 7389 . . . . . 6 class (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)
3713, 14, 18, 20, 36cmpo 7391 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
3810, 12, 37csb 3864 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
396, 9, 38csb 3864 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
402, 3, 5, 4, 39cmpo 7391 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
411, 40wceq 1540 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ranfn  49589  reldmran  49591  ranfval  49593  relran  49603
  Copyright terms: Public domain W3C validator