Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ran Structured version   Visualization version   GIF version

Definition df-ran 49346
Description: Definition of the (local) right Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩Ran𝐸)𝑋) consists of right Kan extensions of 𝑋 along 𝐹, which are universal pairs from the pre-composition functor given by 𝐹 to 𝑋 (ranval2 49366). The definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49366 (retrieved 3 Nov 2025).

A right Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (ranrcl4 49374) and the second component is a natural transformation 𝐴:𝐿𝐹𝑋 (ranrcl5 49375) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of a "inverse" of pre-composition; the source category is "extended" along 𝐶𝐷.

The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-lan 49345 for the dual concept.

(Contributed by Zhi Wang, 4-Nov-2025.)

Assertion
Ref Expression
df-ran Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-ran
StepHypRef Expression
1 cran 49344 . 2 class Ran
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3457 . . . 4 class V
54, 4cxp 5650 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1538 . . . . 5 class 𝑝
8 c1st 7981 . . . . 5 class 1st
97, 8cfv 6528 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7982 . . . . . 6 class 2nd
127, 11cfv 6528 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1538 . . . . . . 7 class 𝑐
1610cv 1538 . . . . . . 7 class 𝑑
17 cfunc 17854 . . . . . . 7 class Func
1815, 16, 17co 7400 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1538 . . . . . . 7 class 𝑒
2015, 19, 17co 7400 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4605 . . . . . . . . 9 class 𝑑, 𝑒
2213cv 1538 . . . . . . . . 9 class 𝑓
23 cprcof 49147 . . . . . . . . 9 class −∘F
2421, 22, 23co 7400 . . . . . . . 8 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
25 coppf 48950 . . . . . . . 8 class oppFunc
2624, 25cfv 6528 . . . . . . 7 class (oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))
2714cv 1538 . . . . . . 7 class 𝑥
28 cfuc 17945 . . . . . . . . . 10 class FuncCat
2916, 19, 28co 7400 . . . . . . . . 9 class (𝑑 FuncCat 𝑒)
30 coppc 17710 . . . . . . . . 9 class oppCat
3129, 30cfv 6528 . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒))
3215, 19, 28co 7400 . . . . . . . . 9 class (𝑐 FuncCat 𝑒)
3332, 30cfv 6528 . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒))
34 cup 48974 . . . . . . . 8 class UP
3531, 33, 34co 7400 . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))
3626, 27, 35co 7400 . . . . . 6 class ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)
3713, 14, 18, 20, 36cmpo 7402 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
3810, 12, 37csb 3872 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
396, 9, 38csb 3872 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
402, 3, 5, 4, 39cmpo 7402 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
411, 40wceq 1539 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ ((oppFunc‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒))UP(oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ranfn  49348  reldmran  49350  ranfval  49352  relran  49360
  Copyright terms: Public domain W3C validator