Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-ran Structured version   Visualization version   GIF version

Definition df-ran 49590
Description: Definition of the (local) right Kan extension. Given a functor 𝐹:𝐶𝐷 and a functor 𝑋:𝐶𝐸, the set (𝐹(⟨𝐶, 𝐷⟩ Ran 𝐸)𝑋) consists of right Kan extensions of 𝑋 along 𝐹, which are universal pairs from the pre-composition functor given by 𝐹 to 𝑋 (ranval2 49612). The definition in § 3 of Chapter X in p. 236 of Mac Lane, Saunders, Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf 49612 (retrieved 3 Nov 2025).

A right Kan extension is in the form of 𝐿, 𝐴 where the first component is a functor 𝐿:𝐷𝐸 (ranrcl4 49621) and the second component is a natural transformation 𝐴:𝐿𝐹𝑋 (ranrcl5 49622) where 𝐿𝐹 is the composed functor. Intuitively, the first component 𝐿 can be regarded as the result of an "inverse" of pre-composition; the source category of 𝑋:𝐶𝐸 is "extended" along 𝐹:𝐶𝐷.

The right Kan extension is a generalization of many categorical concepts such as limit. In § 7 of Chapter X of Categories for the Working Mathematician, it is concluded that "the notion of Kan extensions subsumes all the other fundamental concepts of category theory".

This definition was chosen over the other version in the commented out section due to its better reverse closure property.

See df-lan 49589 for the dual concept.

(Contributed by Zhi Wang, 4-Nov-2025.)

Assertion
Ref Expression
df-ran Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Distinct variable group:   𝑐,𝑑,𝑒,𝑓,𝑝,𝑥

Detailed syntax breakdown of Definition df-ran
StepHypRef Expression
1 cran 49588 . 2 class Ran
2 vp . . 3 setvar 𝑝
3 ve . . 3 setvar 𝑒
4 cvv 3444 . . . 4 class V
54, 4cxp 5629 . . 3 class (V × V)
6 vc . . . 4 setvar 𝑐
72cv 1539 . . . . 5 class 𝑝
8 c1st 7945 . . . . 5 class 1st
97, 8cfv 6499 . . . 4 class (1st𝑝)
10 vd . . . . 5 setvar 𝑑
11 c2nd 7946 . . . . . 6 class 2nd
127, 11cfv 6499 . . . . 5 class (2nd𝑝)
13 vf . . . . . 6 setvar 𝑓
14 vx . . . . . 6 setvar 𝑥
156cv 1539 . . . . . . 7 class 𝑐
1610cv 1539 . . . . . . 7 class 𝑑
17 cfunc 17796 . . . . . . 7 class Func
1815, 16, 17co 7369 . . . . . 6 class (𝑐 Func 𝑑)
193cv 1539 . . . . . . 7 class 𝑒
2015, 19, 17co 7369 . . . . . 6 class (𝑐 Func 𝑒)
2116, 19cop 4591 . . . . . . . . 9 class 𝑑, 𝑒
2213cv 1539 . . . . . . . . 9 class 𝑓
23 cprcof 49355 . . . . . . . . 9 class −∘F
2421, 22, 23co 7369 . . . . . . . 8 class (⟨𝑑, 𝑒⟩ −∘F 𝑓)
25 coppf 49104 . . . . . . . 8 class oppFunc
2624, 25cfv 6499 . . . . . . 7 class ( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))
2714cv 1539 . . . . . . 7 class 𝑥
28 cfuc 17887 . . . . . . . . . 10 class FuncCat
2916, 19, 28co 7369 . . . . . . . . 9 class (𝑑 FuncCat 𝑒)
30 coppc 17652 . . . . . . . . 9 class oppCat
3129, 30cfv 6499 . . . . . . . 8 class (oppCat‘(𝑑 FuncCat 𝑒))
3215, 19, 28co 7369 . . . . . . . . 9 class (𝑐 FuncCat 𝑒)
3332, 30cfv 6499 . . . . . . . 8 class (oppCat‘(𝑐 FuncCat 𝑒))
34 cup 49155 . . . . . . . 8 class UP
3531, 33, 34co 7369 . . . . . . 7 class ((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))
3626, 27, 35co 7369 . . . . . 6 class (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)
3713, 14, 18, 20, 36cmpo 7371 . . . . 5 class (𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
3810, 12, 37csb 3859 . . . 4 class (2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
396, 9, 38csb 3859 . . 3 class (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥))
402, 3, 5, 4, 39cmpo 7371 . 2 class (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
411, 40wceq 1540 1 wff Ran = (𝑝 ∈ (V × V), 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (𝑐 Func 𝑒) ↦ (( oppFunc ‘(⟨𝑑, 𝑒⟩ −∘F 𝑓))((oppCat‘(𝑑 FuncCat 𝑒)) UP (oppCat‘(𝑐 FuncCat 𝑒)))𝑥)))
Colors of variables: wff setvar class
This definition is referenced by:  ranfn  49592  reldmran  49594  ranfval  49596  relran  49606
  Copyright terms: Public domain W3C validator