| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > concom | Structured version Visualization version GIF version | ||
| Description: A cone to a diagram commutes with the diagram. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| islmd.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| islmd.a | ⊢ 𝐴 = (Base‘𝐶) |
| islmd.n | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| islmd.b | ⊢ 𝐵 = (Base‘𝐷) |
| concl.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| concl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| concl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| concom.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| concom.m | ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) |
| concom.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| concom.o | ⊢ · = (comp‘𝐶) |
| concom.r | ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) |
| Ref | Expression |
|---|---|
| concom | ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmd.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 2 | concom.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) | |
| 3 | 1, 2 | nat1st2nd 17896 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐾), (2nd ‘𝐾)〉𝑁〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 4 | islmd.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 5 | concom.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 6 | concom.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 7 | concl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | concom.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | concom.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | nati 17900 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 11 | islmd.l | . . . . . . 7 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 12 | 1, 3 | natrcl3 49207 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 13 | 12 | funcrcl3 49062 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | 12 | funcrcl2 49061 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | islmd.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝐶) | |
| 16 | concl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 17 | concl.k | . . . . . . 7 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 18 | 11, 13, 14, 15, 16, 17, 4, 7 | diag11 18184 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| 19 | 11, 13, 14, 15, 16, 17, 4, 8 | diag11 18184 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑍) = 𝑋) |
| 20 | 18, 19 | opeq12d 4841 | . . . . 5 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 = 〈𝑋, 𝑋〉) |
| 21 | 20 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))) |
| 22 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) = (𝑅‘𝑍)) | |
| 23 | eqid 2729 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 24 | 11, 13, 14, 15, 16, 17, 4, 7, 5, 23, 8, 9 | diag12 18185 | . . . 4 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝑀) = ((Id‘𝐶)‘𝑋)) |
| 25 | 21, 22, 24 | oveq123d 7390 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋))) |
| 26 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 27 | 4, 15, 12 | funcf1 17808 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶𝐴) |
| 28 | 27, 8 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑍) ∈ 𝐴) |
| 29 | 11, 15, 1, 4, 17, 16, 8, 26, 2 | concl 49643 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) ∈ (𝑋(Hom ‘𝐶)((1st ‘𝐹)‘𝑍))) |
| 30 | 15, 26, 23, 13, 16, 6, 28, 29 | catrid 17625 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋)) = (𝑅‘𝑍)) |
| 31 | 25, 30 | eqtrd 2764 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (𝑅‘𝑍)) |
| 32 | 18 | opeq1d 4839 | . . . 4 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 = 〈𝑋, ((1st ‘𝐹)‘𝑌)〉) |
| 33 | 32 | oveq1d 7384 | . . 3 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))) |
| 34 | 33 | oveqd 7386 | . 2 ⊢ (𝜑 → (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 35 | 10, 31, 34 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4591 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 Hom chom 17207 compcco 17208 Idccid 17606 Nat cnat 17886 Δfunccdiag 18153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-hom 17220 df-cco 17221 df-cat 17609 df-cid 17610 df-func 17800 df-nat 17888 df-xpc 18113 df-1stf 18114 df-curf 18155 df-diag 18157 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |