| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > concom | Structured version Visualization version GIF version | ||
| Description: A cone to a diagram commutes with the diagram. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| islmd.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| islmd.a | ⊢ 𝐴 = (Base‘𝐶) |
| islmd.n | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| islmd.b | ⊢ 𝐵 = (Base‘𝐷) |
| concl.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| concl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| concl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| concom.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| concom.m | ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) |
| concom.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| concom.o | ⊢ · = (comp‘𝐶) |
| concom.r | ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) |
| Ref | Expression |
|---|---|
| concom | ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmd.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 2 | concom.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) | |
| 3 | 1, 2 | nat1st2nd 17861 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐾), (2nd ‘𝐾)〉𝑁〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 4 | islmd.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 5 | concom.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 6 | concom.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 7 | concl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | concom.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | concom.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | nati 17865 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 11 | islmd.l | . . . . . . 7 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 12 | 1, 3 | natrcl3 49325 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 13 | 12 | funcrcl3 49180 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | 12 | funcrcl2 49179 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | islmd.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝐶) | |
| 16 | concl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 17 | concl.k | . . . . . . 7 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 18 | 11, 13, 14, 15, 16, 17, 4, 7 | diag11 18149 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| 19 | 11, 13, 14, 15, 16, 17, 4, 8 | diag11 18149 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑍) = 𝑋) |
| 20 | 18, 19 | opeq12d 4830 | . . . . 5 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 = 〈𝑋, 𝑋〉) |
| 21 | 20 | oveq1d 7361 | . . . 4 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))) |
| 22 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) = (𝑅‘𝑍)) | |
| 23 | eqid 2731 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 24 | 11, 13, 14, 15, 16, 17, 4, 7, 5, 23, 8, 9 | diag12 18150 | . . . 4 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝑀) = ((Id‘𝐶)‘𝑋)) |
| 25 | 21, 22, 24 | oveq123d 7367 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋))) |
| 26 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 27 | 4, 15, 12 | funcf1 17773 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶𝐴) |
| 28 | 27, 8 | ffvelcdmd 7018 | . . . 4 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑍) ∈ 𝐴) |
| 29 | 11, 15, 1, 4, 17, 16, 8, 26, 2 | concl 49761 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) ∈ (𝑋(Hom ‘𝐶)((1st ‘𝐹)‘𝑍))) |
| 30 | 15, 26, 23, 13, 16, 6, 28, 29 | catrid 17590 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋)) = (𝑅‘𝑍)) |
| 31 | 25, 30 | eqtrd 2766 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (𝑅‘𝑍)) |
| 32 | 18 | opeq1d 4828 | . . . 4 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 = 〈𝑋, ((1st ‘𝐹)‘𝑌)〉) |
| 33 | 32 | oveq1d 7361 | . . 3 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))) |
| 34 | 33 | oveqd 7363 | . 2 ⊢ (𝜑 → (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 35 | 10, 31, 34 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4579 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 compcco 17173 Idccid 17571 Nat cnat 17851 Δfunccdiag 18118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-func 17765 df-nat 17853 df-xpc 18078 df-1stf 18079 df-curf 18120 df-diag 18122 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |