| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > concom | Structured version Visualization version GIF version | ||
| Description: A cone to a diagram commutes with the diagram. (Contributed by Zhi Wang, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| islmd.l | ⊢ 𝐿 = (𝐶Δfunc𝐷) |
| islmd.a | ⊢ 𝐴 = (Base‘𝐶) |
| islmd.n | ⊢ 𝑁 = (𝐷 Nat 𝐶) |
| islmd.b | ⊢ 𝐵 = (Base‘𝐷) |
| concl.k | ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) |
| concl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| concl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| concom.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| concom.m | ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) |
| concom.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| concom.o | ⊢ · = (comp‘𝐶) |
| concom.r | ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) |
| Ref | Expression |
|---|---|
| concom | ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmd.n | . . 3 ⊢ 𝑁 = (𝐷 Nat 𝐶) | |
| 2 | concom.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (𝐾𝑁𝐹)) | |
| 3 | 1, 2 | nat1st2nd 17923 | . . 3 ⊢ (𝜑 → 𝑅 ∈ (〈(1st ‘𝐾), (2nd ‘𝐾)〉𝑁〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 4 | islmd.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 5 | concom.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 6 | concom.o | . . 3 ⊢ · = (comp‘𝐶) | |
| 7 | concl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | concom.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | concom.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ (𝑌𝐽𝑍)) | |
| 10 | 1, 3, 4, 5, 6, 7, 8, 9 | nati 17927 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 11 | islmd.l | . . . . . . 7 ⊢ 𝐿 = (𝐶Δfunc𝐷) | |
| 12 | 1, 3 | natrcl3 49218 | . . . . . . . 8 ⊢ (𝜑 → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 13 | 12 | funcrcl3 49073 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | 12 | funcrcl2 49072 | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 15 | islmd.a | . . . . . . 7 ⊢ 𝐴 = (Base‘𝐶) | |
| 16 | concl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 17 | concl.k | . . . . . . 7 ⊢ 𝐾 = ((1st ‘𝐿)‘𝑋) | |
| 18 | 11, 13, 14, 15, 16, 17, 4, 7 | diag11 18211 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = 𝑋) |
| 19 | 11, 13, 14, 15, 16, 17, 4, 8 | diag11 18211 | . . . . . 6 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑍) = 𝑋) |
| 20 | 18, 19 | opeq12d 4848 | . . . . 5 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 = 〈𝑋, 𝑋〉) |
| 21 | 20 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))) |
| 22 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) = (𝑅‘𝑍)) | |
| 23 | eqid 2730 | . . . . 5 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 24 | 11, 13, 14, 15, 16, 17, 4, 7, 5, 23, 8, 9 | diag12 18212 | . . . 4 ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝑀) = ((Id‘𝐶)‘𝑋)) |
| 25 | 21, 22, 24 | oveq123d 7411 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋))) |
| 26 | eqid 2730 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 27 | 4, 15, 12 | funcf1 17835 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐹):𝐵⟶𝐴) |
| 28 | 27, 8 | ffvelcdmd 7060 | . . . 4 ⊢ (𝜑 → ((1st ‘𝐹)‘𝑍) ∈ 𝐴) |
| 29 | 11, 15, 1, 4, 17, 16, 8, 26, 2 | concl 49654 | . . . 4 ⊢ (𝜑 → (𝑅‘𝑍) ∈ (𝑋(Hom ‘𝐶)((1st ‘𝐹)‘𝑍))) |
| 30 | 15, 26, 23, 13, 16, 6, 28, 29 | catrid 17652 | . . 3 ⊢ (𝜑 → ((𝑅‘𝑍)(〈𝑋, 𝑋〉 · ((1st ‘𝐹)‘𝑍))((Id‘𝐶)‘𝑋)) = (𝑅‘𝑍)) |
| 31 | 25, 30 | eqtrd 2765 | . 2 ⊢ (𝜑 → ((𝑅‘𝑍)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐾)‘𝑍)〉 · ((1st ‘𝐹)‘𝑍))((𝑌(2nd ‘𝐾)𝑍)‘𝑀)) = (𝑅‘𝑍)) |
| 32 | 18 | opeq1d 4846 | . . . 4 ⊢ (𝜑 → 〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 = 〈𝑋, ((1st ‘𝐹)‘𝑌)〉) |
| 33 | 32 | oveq1d 7405 | . . 3 ⊢ (𝜑 → (〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍)) = (〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))) |
| 34 | 33 | oveqd 7407 | . 2 ⊢ (𝜑 → (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈((1st ‘𝐾)‘𝑌), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌)) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| 35 | 10, 31, 34 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝑅‘𝑍) = (((𝑌(2nd ‘𝐹)𝑍)‘𝑀)(〈𝑋, ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐹)‘𝑍))(𝑅‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4598 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 compcco 17239 Idccid 17633 Nat cnat 17913 Δfunccdiag 18180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-func 17827 df-nat 17915 df-xpc 18140 df-1stf 18141 df-curf 18182 df-diag 18184 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |