| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cmd | Structured version Visualization version GIF version | ||
| Description: A co-cone (or cocone) to
a diagram (see df-lmd 49467 for definition), or a
natural sink for a diagram in a category 𝐶 is a pair of an object
𝑋 in 𝐶 and a natural
transformation from the diagram to the
constant functor (or constant diagram) of the object 𝑋. The
second
component associates each object in the index category with a morphism
in 𝐶 whose codomain is 𝑋 (coccl 49480). The naturality guarantees
that the combination of the diagram with the co-cone must commute
(coccom 49482). Definition 11.27(1) of [Adamek] p. 202.
A colimit of a diagram 𝐹:𝐷⟶𝐶 of type 𝐷 in category 𝐶 is a universal pair from the diagram to the diagonal functor (𝐶Δfunc𝐷). The universal pair is a co-cone to the diagram satisfying the universal property, that each co-cone to the diagram uniquely factors through the colimit. (iscmd 49484). Definition 11.27(2) of [Adamek] p. 202. Initial objects, coproducts, coequalizers, pushouts, and direct limits can be considered as colimits of some diagram; colimits can be further generalized as left Kan extensions (df-lan 49432). "cmd" is short for "colimit of a diagram". See df-lmd 49467 for the dual concept. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| df-cmd | ⊢ Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccmd 49466 | . 2 class Colimit | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | vd | . . 3 setvar 𝑑 | |
| 4 | cvv 3459 | . . 3 class V | |
| 5 | vf | . . . 4 setvar 𝑓 | |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑑 |
| 7 | 2 | cv 1539 | . . . . 5 class 𝑐 |
| 8 | cfunc 17865 | . . . . 5 class Func | |
| 9 | 6, 7, 8 | co 7403 | . . . 4 class (𝑑 Func 𝑐) |
| 10 | cdiag 18222 | . . . . . 6 class Δfunc | |
| 11 | 7, 6, 10 | co 7403 | . . . . 5 class (𝑐Δfunc𝑑) |
| 12 | 5 | cv 1539 | . . . . 5 class 𝑓 |
| 13 | cfuc 17956 | . . . . . . 7 class FuncCat | |
| 14 | 6, 7, 13 | co 7403 | . . . . . 6 class (𝑑 FuncCat 𝑐) |
| 15 | cup 49056 | . . . . . 6 class UP | |
| 16 | 7, 14, 15 | co 7403 | . . . . 5 class (𝑐 UP (𝑑 FuncCat 𝑐)) |
| 17 | 11, 12, 16 | co 7403 | . . . 4 class ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓) |
| 18 | 5, 9, 17 | cmpt 5201 | . . 3 class (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)) |
| 19 | 2, 3, 4, 4, 18 | cmpo 7405 | . 2 class (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))) |
| 20 | 1, 19 | wceq 1540 | 1 wff Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: reldmcmd 49470 cmdfval 49472 |
| Copyright terms: Public domain | W3C validator |