Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cmd Structured version   Visualization version   GIF version

Definition df-cmd 49639
Description: A co-cone (or cocone) to a diagram (see df-lmd 49638 for definition), or a natural sink for a diagram in a category 𝐶 is a pair of an object 𝑋 in 𝐶 and a natural transformation from the diagram to the constant functor (or constant diagram) of the object 𝑋. The second component associates each object in the index category with a morphism in 𝐶 whose codomain is 𝑋 (coccl 49655). The naturality guarantees that the combination of the diagram with the co-cone must commute (coccom 49657). Definition 11.27(1) of [Adamek] p. 202.

A colimit of a diagram 𝐹:𝐷𝐶 of type 𝐷 in category 𝐶 is a universal pair from the diagram to the diagonal functor (𝐶Δfunc𝐷). The universal pair is a co-cone to the diagram satisfying the universal property, that each co-cone to the diagram uniquely factors through the colimit. (iscmd 49659). Definition 11.27(2) of [Adamek] p. 202.

Initial objects (initocmd 49662), coproducts, coequalizers, pushouts, and direct limits can be considered as colimits of some diagram; colimits can be further generalized as left Kan extensions (cmdlan 49665).

"cmd" is short for "colimit of a diagram". See df-lmd 49638 for the dual concept (lmddu 49660, cmddu 49661). (Contributed by Zhi Wang, 12-Nov-2025.)

Assertion
Ref Expression
df-cmd Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
Distinct variable group:   𝑐,𝑑,𝑓

Detailed syntax breakdown of Definition df-cmd
StepHypRef Expression
1 ccmd 49637 . 2 class Colimit
2 vc . . 3 setvar 𝑐
3 vd . . 3 setvar 𝑑
4 cvv 3450 . . 3 class V
5 vf . . . 4 setvar 𝑓
63cv 1539 . . . . 5 class 𝑑
72cv 1539 . . . . 5 class 𝑐
8 cfunc 17823 . . . . 5 class Func
96, 7, 8co 7390 . . . 4 class (𝑑 Func 𝑐)
10 cdiag 18180 . . . . . 6 class Δfunc
117, 6, 10co 7390 . . . . 5 class (𝑐Δfunc𝑑)
125cv 1539 . . . . 5 class 𝑓
13 cfuc 17914 . . . . . . 7 class FuncCat
146, 7, 13co 7390 . . . . . 6 class (𝑑 FuncCat 𝑐)
15 cup 49166 . . . . . 6 class UP
167, 14, 15co 7390 . . . . 5 class (𝑐 UP (𝑑 FuncCat 𝑐))
1711, 12, 16co 7390 . . . 4 class ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)
185, 9, 17cmpt 5191 . . 3 class (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓))
192, 3, 4, 4, 18cmpo 7392 . 2 class (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
201, 19wceq 1540 1 wff Colimit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((𝑐Δfunc𝑑)(𝑐 UP (𝑑 FuncCat 𝑐))𝑓)))
Colors of variables: wff setvar class
This definition is referenced by:  reldmcmd  49641  cmdfval  49643
  Copyright terms: Public domain W3C validator