| Metamath
Proof Explorer Theorem List (p. 495 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30897) |
(30898-32420) |
(32421-49787) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isthinc 49401* | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | ||
| Theorem | isthinc2 49402* | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ≼ 1o)) | ||
| Theorem | isthinc3 49403* | A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔)) | ||
| Theorem | thincc 49404 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
| Theorem | thinccd 49405 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | thincssc 49406 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat ⊆ Cat | ||
| Theorem | isthincd2lem1 49407* | Lemma for isthincd2 49419 and thincmo2 49408. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thincmo2 49408 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thinchom 49409 | A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) | ||
| Theorem | thincmo 49410* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmoALT 49411* | Alternate proof of thincmo 49410. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmod 49412* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincn0eu 49413* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | thincid 49414 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | thincmon 49415 | In a thin category, all morphisms are monomorphisms. Example 7.33(9) of [Adamek] p. 110. The converse does not hold. See grptcmon 49575. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | thincepi 49416 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49576. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | isthincd2lem2 49417* | Lemma for isthincd2 49419. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | isthincd 49418* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | isthincd2 49419* | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
| Theorem | oppcthin 49420 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
| Theorem | oppcthinco 49421 | If the opposite category of a thin category has the same base and hom-sets as the original category, then it has the same composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendc 49422* | The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets (oppcendc 49000) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendcALT 49423* | Alternate proof of oppcthinendc 49422. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | thincpropd 49424 | Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) | ||
| Theorem | subthinc 49425 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
| Theorem | functhinclem1 49426* | Lemma for functhinc 49430. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhinclem2 49427* | Lemma for functhinc 49430. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
| Theorem | functhinclem3 49428* | Lemma for functhinc 49430. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
| Theorem | functhinclem4 49429* | Lemma for functhinc 49430. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
| Theorem | functhinc 49430* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 48994), and can be obtained from funcf2 17810, f002 48835, and ralrimivva 3178. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhincfun 49431 | A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → Fun (𝐶 Func 𝐷)) | ||
| Theorem | fullthinc 49432* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
| Theorem | fullthinc2 49433 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
| Theorem | thincfth 49434 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
| Theorem | thincciso 49435* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso.u" is redundant thanks to elbasfv 17161. (Contributed by Zhi Wang, 16-Oct-2024.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
| Theorem | thinccisod 49436* | Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | thincciso2 49437 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17161. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑋 ∈ ThinCat) | ||
| Theorem | thincciso3 49438 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17161. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑌 ∈ ThinCat) | ||
| Theorem | thincciso4 49439 | Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17161. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) ⇒ ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) | ||
| Theorem | 0thincg 49440 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
| Theorem | 0thinc 49441 | The empty category (see 0cat 17630) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ∅ ∈ ThinCat | ||
| Theorem | indcthing 49442* | An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | discthing 49443* | A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | indthinc 49444* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 49446, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | indthincALT 49445* | An alternate proof of indthinc 49444 assuming more axioms including ax-pow 5315 and ax-un 7691. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | prsthinc 49446* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 48993 and catprs2 48994 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | setcthin 49447* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | setc2othin 49448 | The category (SetCat‘2o) is thin. A special case of setcthin 49447. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (SetCat‘2o) ∈ ThinCat | ||
| Theorem | thincsect 49449 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
| Theorem | thincsect2 49450 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. Example 7.25(4) of [Adamek] p. 108. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | thincinv 49451 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺. Example 7.20(7) of [Adamek] p. 107. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
| Theorem | thinciso 49452 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
| Theorem | thinccic 49453 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
| Syntax | ctermc 49454 | Extend class notation with the class of terminal categories. |
| class TermCat | ||
| Definition | df-termc 49455* |
Definition of the proper class (termcnex 49558) of terminal categories, or
final categories, i.e., categories with exactly one object and exactly
one morphism, the latter of which is an identity morphism (termcid 49468).
These are exactly the thin categories with a singleton base set.
Example 3.3(4.c) of [Adamek] p. 24.
As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49497). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49502). See also dftermc3 49513 where TermCat is defined as categories with exactly one disjointified arrow. Unlike https://ncatlab.org/nlab/show/terminal+category 49513, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49473. Followed directly from the definition, terminal categories are thin (termcthin 49459). The opposite category of a terminal category is "almost" itself (oppctermco 49487). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49522). Having defined the terminal category, we can then use it to define the universal property of initial (dfinito4 49483) and terminal objects (dftermo4 49484). The universal properties provide an alternate proof of initoeu1 17953, termoeu1 17960, initoeu2 17958, and termoeu2 49220. Since terminal categories are terminal objects, all terminal categories are mutually isomorphic (termcciso 49498). The dual concept is the initial category, or the empty category (Example 7.2(3) of [Adamek] p. 101). See 0catg 17629, 0thincg 49440, func0g 49071, 0funcg 49067, and initc 49073. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | ||
| Theorem | istermc 49456* | The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) | ||
| Theorem | istermc2 49457* | The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ 𝐵)) | ||
| Theorem | istermc3 49458 | The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8973, map1 8988, and euen1b 8976. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) | ||
| Theorem | termcthin 49459 | A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat → 𝐶 ∈ ThinCat) | ||
| Theorem | termcthind 49460 | A terminal category is a thin category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | termccd 49461 | A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | termcbas 49462* | The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) | ||
| Theorem | termco 49463 | The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∪ 𝐵 ∈ 𝐵) | ||
| Theorem | termcbas2 49464 | The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = {𝑋}) | ||
| Theorem | termcbasmo 49465 | Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | termchomn0 49466 | All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termchommo 49467 | All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | termcid 49468 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | termcid2 49469 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑌)) | ||
| Theorem | termchom 49470 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) | ||
| Theorem | termchom2 49471 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) | ||
| Theorem | setcsnterm 49472 | The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘{{𝐴}}) ∈ TermCat | ||
| Theorem | setc1oterm 49473 | The category (SetCat‘1o), i.e., the trivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘1o) ∈ TermCat | ||
| Theorem | setc1obas 49474 | The base of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ 1o = (Base‘ 1 ) | ||
| Theorem | setc1ohomfval 49475 | Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) | ||
| Theorem | setc1ocofval 49476 | Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈〈∅, ∅〉, ∅, {〈∅, ∅, ∅〉}〉} = (comp‘ 1 ) | ||
| Theorem | setc1oid 49477 | The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐼 = (Id‘ 1 ) ⇒ ⊢ (𝐼‘∅) = ∅ | ||
| Theorem | funcsetc1ocl 49478 | The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) | ||
| Theorem | funcsetc1o 49479* | Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) | ||
| Theorem | isinito2lem 49480 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅)) | ||
| Theorem | isinito2 49481 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅) | ||
| Theorem | isinito3 49482 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) | ||
| Theorem | dfinito4 49483* | An alternate definition of df-inito 17926 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17926. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ ⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) | ||
| Theorem | dftermo4 49484* | An alternate definition of df-termo 17927 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17927. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ ⦋(oppCat‘𝑐) / 𝑜⦌⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑜))‘∅) / 𝑓⦌dom (𝑓(𝑜 UP 𝑑)∅)) | ||
| Theorem | termcpropd 49485 | Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) | ||
| Theorem | oppctermhom 49486 | The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppctermco 49487 | The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that 𝐶 = 𝑂 cannot be proved because 𝐶 might not even be a function. For example, let 𝐶 be ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), ((V × V) × {{∅}})〉} ∪ {〈(comp‘ndx), {∅}〉, 〈(comp‘ndx), 2o〉}); it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc 17653 and df-sets 17110. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcterm 49488 | The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝑂 ∈ TermCat) | ||
| Theorem | functermclem 49489 | Lemma for functermc 49490. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾 = 𝐹) & ⊢ (𝜑 → (𝐹𝑅𝐿 ↔ 𝐿 = 𝐺)) ⇒ ⊢ (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc 49490* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc2 49491* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) | ||
| Theorem | functermceu 49492* | There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | fulltermc 49493* | A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) | ||
| Theorem | fulltermc2 49494 | Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) (Proof shortened by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termcterm 49495 | A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | ||
| Theorem | termcterm2 49496 | A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | termcterm3 49497 | In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → (SetCat‘1o) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐶 ∈ (TermO‘𝐸))) | ||
| Theorem | termcciso 49498 | A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) | ||
| Theorem | termccisoeu 49499* | The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) & ⊢ (𝜑 → 𝑌 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) | ||
| Theorem | termc2 49500* | If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49501 for hints. See also eufunc 49504 and euendfunc2 49509 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |