| Metamath
Proof Explorer Theorem List (p. 495 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30862) |
(30863-32385) |
(32386-49800) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | opf2 49401* | The morphism part of the op functor on functor categories. Lemma for fucoppc 49405. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ (𝑌𝑁𝑋)) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷) | ||
| Theorem | fucoppclem 49402 | Lemma for fucoppc 49405. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → (𝑌𝑁𝑋) = ((𝐹‘𝑋)(𝑂 Nat 𝑃)(𝐹‘𝑌))) | ||
| Theorem | fucoppcid 49403* | The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ (𝐶 Func 𝐷)) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
| Theorem | fucoppcco 49404* | The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌)) & ⊢ (𝜑 → 𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍)) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(〈𝑋, 𝑌〉(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐴))) | ||
| Theorem | fucoppc 49405* | The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ 𝑇 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐼 = (Iso‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹(𝑅𝐼𝑆)𝐺) | ||
| Theorem | fucoppcffth 49406* | A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺) | ||
| Theorem | fucoppcfunc 49407* | A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ 𝑅 = (oppCat‘𝑄) & ⊢ 𝑆 = (𝑂 FuncCat 𝑃) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥)))) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) | ||
| Theorem | fucoppccic 49408 | The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑋 = (oppCat‘(𝐷 FuncCat 𝐸)) & ⊢ 𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐸 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | oppfdiag1 49409 | A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶))) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘((1st ‘𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)) | ||
| Theorem | oppfdiag1a 49410 | A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → ( oppFunc ‘((1st ‘𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋)) | ||
| Theorem | oppfdiag 49411* | A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism (fucoppc 49405). (Contributed by Zhi Wang, 19-Nov-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ 𝑃 = (oppCat‘𝐷) & ⊢ 𝐿 = (𝐶Δfunc𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶))) & ⊢ 𝑁 = (𝐷 Nat 𝐶) & ⊢ (𝜑 → 𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚)))) ⇒ ⊢ (𝜑 → (〈𝐹, 𝐺〉 ∘func ( oppFunc ‘𝐿)) = (𝑂Δfunc𝑃)) | ||
| Syntax | cthinc 49412 | Extend class notation with the class of thin categories. |
| class ThinCat | ||
| Definition | df-thinc 49413* | Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} | ||
| Theorem | isthinc 49414* | The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) | ||
| Theorem | isthinc2 49415* | A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ≼ 1o)) | ||
| Theorem | isthinc3 49416* | A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔)) | ||
| Theorem | thincc 49417 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
| Theorem | thinccd 49418 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | thincssc 49419 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat ⊆ Cat | ||
| Theorem | isthincd2lem1 49420* | Lemma for isthincd2 49432 and thincmo2 49421. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thincmo2 49421 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thinchom 49422 | A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) | ||
| Theorem | thincmo 49423* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmoALT 49424* | Alternate proof of thincmo 49423. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmod 49425* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincn0eu 49426* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | thincid 49427 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | thincmon 49428 | In a thin category, all morphisms are monomorphisms. Example 7.33(9) of [Adamek] p. 110. The converse does not hold. See grptcmon 49588. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | thincepi 49429 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49589. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | isthincd2lem2 49430* | Lemma for isthincd2 49432. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | isthincd 49431* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | isthincd2 49432* | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
| Theorem | oppcthin 49433 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
| Theorem | oppcthinco 49434 | If the opposite category of a thin category has the same base and hom-sets as the original category, then it has the same composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendc 49435* | The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets (oppcendc 49013) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendcALT 49436* | Alternate proof of oppcthinendc 49435. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | thincpropd 49437 | Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) | ||
| Theorem | subthinc 49438 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
| Theorem | functhinclem1 49439* | Lemma for functhinc 49443. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhinclem2 49440* | Lemma for functhinc 49443. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
| Theorem | functhinclem3 49441* | Lemma for functhinc 49443. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
| Theorem | functhinclem4 49442* | Lemma for functhinc 49443. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
| Theorem | functhinc 49443* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 49007), and can be obtained from funcf2 17775, f002 48848, and ralrimivva 3172. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhincfun 49444 | A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → Fun (𝐶 Func 𝐷)) | ||
| Theorem | fullthinc 49445* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
| Theorem | fullthinc2 49446 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
| Theorem | thincfth 49447 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
| Theorem | thincciso 49448* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 16-Oct-2024.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
| Theorem | thinccisod 49449* | Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | thincciso2 49450 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑋 ∈ ThinCat) | ||
| Theorem | thincciso3 49451 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑌 ∈ ThinCat) | ||
| Theorem | thincciso4 49452 | Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) ⇒ ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) | ||
| Theorem | 0thincg 49453 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
| Theorem | 0thinc 49454 | The empty category (see 0cat 17595) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ∅ ∈ ThinCat | ||
| Theorem | indcthing 49455* | An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | discthing 49456* | A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | indthinc 49457* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 49459, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | indthincALT 49458* | An alternate proof of indthinc 49457 assuming more axioms including ax-pow 5304 and ax-un 7671. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | prsthinc 49459* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 49006 and catprs2 49007 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | setcthin 49460* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | setc2othin 49461 | The category (SetCat‘2o) is thin. A special case of setcthin 49460. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (SetCat‘2o) ∈ ThinCat | ||
| Theorem | thincsect 49462 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
| Theorem | thincsect2 49463 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. Example 7.25(4) of [Adamek] p. 108. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | thincinv 49464 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺. Example 7.20(7) of [Adamek] p. 107. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
| Theorem | thinciso 49465 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
| Theorem | thinccic 49466 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
| Syntax | ctermc 49467 | Extend class notation with the class of terminal categories. |
| class TermCat | ||
| Definition | df-termc 49468* |
Definition of the proper class (termcnex 49571) of terminal categories, or
final categories, i.e., categories with exactly one object and exactly
one morphism, the latter of which is an identity morphism (termcid 49481).
These are exactly the thin categories with a singleton base set.
Example 3.3(4.c) of [Adamek] p. 24.
As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49510). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49515). See also dftermc3 49526 where TermCat is defined as categories with exactly one disjointified arrow. Unlike https://ncatlab.org/nlab/show/terminal+category 49526, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49486. Followed directly from the definition, terminal categories are thin (termcthin 49472). The opposite category of a terminal category is "almost" itself (oppctermco 49500). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49535). Having defined the terminal category, we can then use it to define the universal property of initial (dfinito4 49496) and terminal objects (dftermo4 49497). The universal properties provide an alternate proof of initoeu1 17918, termoeu1 17925, initoeu2 17923, and termoeu2 49233. Since terminal categories are terminal objects, all terminal categories are mutually isomorphic (termcciso 49511). The dual concept is the initial category, or the empty category (Example 7.2(3) of [Adamek] p. 101). See 0catg 17594, 0thincg 49453, func0g 49084, 0funcg 49080, and initc 49086. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | ||
| Theorem | istermc 49469* | The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) | ||
| Theorem | istermc2 49470* | The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ 𝐵)) | ||
| Theorem | istermc3 49471 | The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8950, map1 8965, and euen1b 8953. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) | ||
| Theorem | termcthin 49472 | A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat → 𝐶 ∈ ThinCat) | ||
| Theorem | termcthind 49473 | A terminal category is a thin category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | termccd 49474 | A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | termcbas 49475* | The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) | ||
| Theorem | termco 49476 | The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∪ 𝐵 ∈ 𝐵) | ||
| Theorem | termcbas2 49477 | The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = {𝑋}) | ||
| Theorem | termcbasmo 49478 | Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | termchomn0 49479 | All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termchommo 49480 | All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | termcid 49481 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | termcid2 49482 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑌)) | ||
| Theorem | termchom 49483 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) | ||
| Theorem | termchom2 49484 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) | ||
| Theorem | setcsnterm 49485 | The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘{{𝐴}}) ∈ TermCat | ||
| Theorem | setc1oterm 49486 | The category (SetCat‘1o), i.e., the trivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘1o) ∈ TermCat | ||
| Theorem | setc1obas 49487 | The base of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ 1o = (Base‘ 1 ) | ||
| Theorem | setc1ohomfval 49488 | Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) | ||
| Theorem | setc1ocofval 49489 | Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈〈∅, ∅〉, ∅, {〈∅, ∅, ∅〉}〉} = (comp‘ 1 ) | ||
| Theorem | setc1oid 49490 | The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐼 = (Id‘ 1 ) ⇒ ⊢ (𝐼‘∅) = ∅ | ||
| Theorem | funcsetc1ocl 49491 | The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) | ||
| Theorem | funcsetc1o 49492* | Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) | ||
| Theorem | isinito2lem 49493 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅)) | ||
| Theorem | isinito2 49494 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅) | ||
| Theorem | isinito3 49495 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) | ||
| Theorem | dfinito4 49496* | An alternate definition of df-inito 17891 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17891. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ ⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) | ||
| Theorem | dftermo4 49497* | An alternate definition of df-termo 17892 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17892. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ ⦋(oppCat‘𝑐) / 𝑜⦌⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑜))‘∅) / 𝑓⦌dom (𝑓(𝑜 UP 𝑑)∅)) | ||
| Theorem | termcpropd 49498 | Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) | ||
| Theorem | oppctermhom 49499 | The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppctermco 49500 | The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that 𝐶 = 𝑂 cannot be proved because 𝐶 might not even be a function. For example, let 𝐶 be ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), ((V × V) × {{∅}})〉} ∪ {〈(comp‘ndx), {∅}〉, 〈(comp‘ndx), 2o〉}); it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc 17618 and df-sets 17075. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |