| Metamath
Proof Explorer Theorem List (p. 495 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30853) |
(30854-32376) |
(32377-49784) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | thincc 49401 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝐶 ∈ ThinCat → 𝐶 ∈ Cat) | ||
| Theorem | thinccd 49402 | A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | thincssc 49403 | A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ThinCat ⊆ Cat | ||
| Theorem | isthincd2lem1 49404* | Lemma for isthincd2 49416 and thincmo2 49405. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thincmo2 49405 | Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | thinchom 49406 | A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {𝐹}) | ||
| Theorem | thincmo 49407* | There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmoALT 49408* | Alternate proof of thincmo 49407. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincmod 49409* | At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌)) | ||
| Theorem | thincn0eu 49410* | In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌))) | ||
| Theorem | thincid 49411 | In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑋)) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | thincmon 49412 | In a thin category, all morphisms are monomorphisms. Example 7.33(9) of [Adamek] p. 110. The converse does not hold. See grptcmon 49572. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑀 = (Mono‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | thincepi 49413 | In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49573. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐸 = (Epi‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌)) | ||
| Theorem | isthincd2lem2 49414* | Lemma for isthincd2 49416. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑍)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ (𝑋𝐻𝑍)) | ||
| Theorem | isthincd 49415* | The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | isthincd2 49416* | The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) & ⊢ (𝜑 → · = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜓 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)))) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 1 ∈ (𝑦𝐻𝑦)) & ⊢ ((𝜑 ∧ 𝜓) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ 1 ))) | ||
| Theorem | oppcthin 49417 | The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.) |
| ⊢ 𝑂 = (oppCat‘𝐶) ⇒ ⊢ (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat) | ||
| Theorem | oppcthinco 49418 | If the opposite category of a thin category has the same base and hom-sets as the original category, then it has the same composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendc 49419* | The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets (oppcendc 48997) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcthinendcALT 49420* | Alternate proof of oppcthinendc 49419. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 ≠ 𝑦 → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | thincpropd 49421 | Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat)) | ||
| Theorem | subthinc 49422 | A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.) |
| ⊢ 𝐷 = (𝐶 ↾cat 𝐽) & ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝐷 ∈ ThinCat) | ||
| Theorem | functhinclem1 49423* | Lemma for functhinc 49427. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹‘𝑧)𝐽(𝐹‘𝑤))) ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhinclem2 49424* | Lemma for functhinc 49427. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅)) ⇒ ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) | ||
| Theorem | functhinclem3 49425* | Lemma for functhinc 49427. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦))))) & ⊢ (𝜑 → (((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅)) & ⊢ (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) ⇒ ⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)𝐽(𝐹‘𝑌))) | ||
| Theorem | functhinclem4 49426* | Lemma for functhinc 49427. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) & ⊢ 1 = (Id‘𝐷) & ⊢ 𝐼 = (Id‘𝐸) & ⊢ · = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝐸) ⇒ ⊢ ((𝜑 ∧ 𝐺 = 𝐾) → ∀𝑎 ∈ 𝐵 (((𝑎𝐺𝑎)‘( 1 ‘𝑎)) = (𝐼‘(𝐹‘𝑎)) ∧ ∀𝑏 ∈ 𝐵 ∀𝑐 ∈ 𝐵 ∀𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(〈𝑎, 𝑏〉 · 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉𝑂(𝐹‘𝑐))((𝑎𝐺𝑏)‘𝑚)))) | ||
| Theorem | functhinc 49427* | A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 48991), and can be obtained from funcf2 17836, f002 48832, and ralrimivva 3181. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ 𝐾 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) ⇒ ⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ 𝐺 = 𝐾)) | ||
| Theorem | functhincfun 49428 | A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) ⇒ ⊢ (𝜑 → Fun (𝐶 Func 𝐷)) | ||
| Theorem | fullthinc 49429* | A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅))) | ||
| Theorem | fullthinc2 49430 | A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹‘𝑋)𝐽(𝐹‘𝑌)) = ∅)) | ||
| Theorem | thincfth 49431 | A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) | ||
| Theorem | thincciso 49432* | Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso.u" is redundant thanks to elbasfv 17191. (Contributed by Zhi Wang, 16-Oct-2024.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓(∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ∅) ∧ 𝑓:𝑅–1-1-onto→𝑆))) | ||
| Theorem | thinccisod 49433* | Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ 𝐻 = (Hom ‘𝑋) & ⊢ 𝐽 = (Hom ‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) = ∅)) ⇒ ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) | ||
| Theorem | thincciso2 49434 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17191. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑌 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑋 ∈ ThinCat) | ||
| Theorem | thincciso3 49435 | Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17191. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) & ⊢ (𝜑 → 𝑋 ∈ ThinCat) ⇒ ⊢ (𝜑 → 𝑌 ∈ ThinCat) | ||
| Theorem | thincciso4 49436 | Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17191. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) ⇒ ⊢ (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat)) | ||
| Theorem | 0thincg 49437 | Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ((𝐶 ∈ 𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat) | ||
| Theorem | 0thinc 49438 | The empty category (see 0cat 17656) is thin. (Contributed by Zhi Wang, 17-Sep-2024.) |
| ⊢ ∅ ∈ ThinCat | ||
| Theorem | indcthing 49439* | An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = {𝐹}) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | discthing 49440* | A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅)) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | indthinc 49441* | An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are ∅. This is a special case of prsthinc 49443, where ≤ = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | indthincALT 49442* | An alternate proof of indthinc 49441 assuming more axioms including ax-pow 5322 and ax-un 7713. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | prsthinc 49443* | Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 48990 and catprs2 48991 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) & ⊢ (𝜑 → ( ≤ × {1o}) = (Hom ‘𝐶)) & ⊢ (𝜑 → ∅ = (comp‘𝐶)) & ⊢ (𝜑 → ≤ = (le‘𝐶)) & ⊢ (𝜑 → 𝐶 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦 ∈ 𝐵 ↦ ∅))) | ||
| Theorem | setcthin 49444* | A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 = (SetCat‘𝑈)) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑈 ∃*𝑝 𝑝 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | setc2othin 49445 | The category (SetCat‘2o) is thin. A special case of setcthin 49444. (Contributed by Zhi Wang, 20-Sep-2024.) |
| ⊢ (SetCat‘2o) ∈ ThinCat | ||
| Theorem | thincsect 49446 | In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) | ||
| Theorem | thincsect2 49447 | In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. Example 7.25(4) of [Adamek] p. 108. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | ||
| Theorem | thincinv 49448 | In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺. Example 7.20(7) of [Adamek] p. 107. (Contributed by Zhi Wang, 24-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝑆 = (Sect‘𝐶) & ⊢ 𝑁 = (Inv‘𝐶) ⇒ ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) | ||
| Theorem | thinciso 49449 | In a thin category, 𝐹:𝑋⟶𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Iso‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅)) | ||
| Theorem | thinccic 49450 | In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.) |
| ⊢ (𝜑 → 𝐶 ∈ ThinCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅))) | ||
| Syntax | ctermc 49451 | Extend class notation with the class of terminal categories. |
| class TermCat | ||
| Definition | df-termc 49452* |
Definition of the proper class (termcnex 49555) of terminal categories, or
final categories, i.e., categories with exactly one object and exactly
one morphism, the latter of which is an identity morphism (termcid 49465).
These are exactly the thin categories with a singleton base set.
Example 3.3(4.c) of [Adamek] p. 24.
As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49494). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49499). See also dftermc3 49510 where TermCat is defined as categories with exactly one disjointified arrow. Unlike https://ncatlab.org/nlab/show/terminal+category 49510, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49470. Followed directly from the definition, terminal categories are thin (termcthin 49456). The opposite category of a terminal category is "almost" itself (oppctermco 49484). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49519). Having defined the terminal category, we can then use it to define the universal property of initial (dfinito4 49480) and terminal objects (dftermo4 49481). The universal properties provide an alternate proof of initoeu1 17979, termoeu1 17986, initoeu2 17984, and termoeu2 49217. Since terminal categories are terminal objects, all terminal categories are mutually isomorphic (termcciso 49495). The dual concept is the initial category, or the empty category (Example 7.2(3) of [Adamek] p. 101). See 0catg 17655, 0thincg 49437, func0g 49068, 0funcg 49064, and initc 49070. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}} | ||
| Theorem | istermc 49453* | The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) | ||
| Theorem | istermc2 49454* | The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥 ∈ 𝐵)) | ||
| Theorem | istermc3 49455 | The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8998, map1 9013, and euen1b 9001. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) | ||
| Theorem | termcthin 49456 | A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat → 𝐶 ∈ ThinCat) | ||
| Theorem | termcthind 49457 | A terminal category is a thin category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ ThinCat) | ||
| Theorem | termccd 49458 | A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ Cat) | ||
| Theorem | termcbas 49459* | The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∃𝑥 𝐵 = {𝑥}) | ||
| Theorem | termco 49460 | The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝜑 → ∪ 𝐵 ∈ 𝐵) | ||
| Theorem | termcbas2 49461 | The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐵 = {𝑋}) | ||
| Theorem | termcbasmo 49462 | Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
| Theorem | termchomn0 49463 | All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termchommo 49464 | All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑊)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | termcid 49465 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑋)) | ||
| Theorem | termcid2 49466 | The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = ( 1 ‘𝑌)) | ||
| Theorem | termchom 49467 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑋)}) | ||
| Theorem | termchom2 49468 | The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = {( 1 ‘𝑍)}) | ||
| Theorem | setcsnterm 49469 | The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘{{𝐴}}) ∈ TermCat | ||
| Theorem | setc1oterm 49470 | The category (SetCat‘1o), i.e., the trivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (SetCat‘1o) ∈ TermCat | ||
| Theorem | setc1obas 49471 | The base of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ 1o = (Base‘ 1 ) | ||
| Theorem | setc1ohomfval 49472 | Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈∅, ∅, 1o〉} = (Hom ‘ 1 ) | ||
| Theorem | setc1ocofval 49473 | Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) ⇒ ⊢ {〈〈∅, ∅〉, ∅, {〈∅, ∅, ∅〉}〉} = (comp‘ 1 ) | ||
| Theorem | setc1oid 49474 | The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐼 = (Id‘ 1 ) ⇒ ⊢ (𝐼‘∅) = ∅ | ||
| Theorem | funcsetc1ocl 49475 | The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) | ||
| Theorem | funcsetc1o 49476* | Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐹 = 〈(𝐵 × 1o), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × 1o))〉) | ||
| Theorem | isinito2lem 49477 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐼 ∈ (Base‘𝐶)) ⇒ ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅)) | ||
| Theorem | isinito2 49478 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅) | ||
| Theorem | isinito3 49479 | The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ 1 = (SetCat‘1o) & ⊢ 𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅) ⇒ ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅)) | ||
| Theorem | dfinito4 49480* | An alternate definition of df-inito 17952 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17952. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ InitO = (𝑐 ∈ Cat ↦ ⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓⦌dom (𝑓(𝑐 UP 𝑑)∅)) | ||
| Theorem | dftermo4 49481* | An alternate definition of df-termo 17953 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17953. (Contributed by Zhi Wang, 23-Oct-2025.) |
| ⊢ TermO = (𝑐 ∈ Cat ↦ ⦋(oppCat‘𝑐) / 𝑜⦌⦋(SetCat‘1o) / 𝑑⦌⦋((1st ‘(𝑑Δfunc𝑜))‘∅) / 𝑓⦌dom (𝑓(𝑜 UP 𝑑)∅)) | ||
| Theorem | termcpropd 49482 | Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat)) | ||
| Theorem | oppctermhom 49483 | The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝑂)) | ||
| Theorem | oppctermco 49484 | The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that 𝐶 = 𝑂 cannot be proved because 𝐶 might not even be a function. For example, let 𝐶 be ({〈(Base‘ndx), {∅}〉, 〈(Hom ‘ndx), ((V × V) × {{∅}})〉} ∪ {〈(comp‘ndx), {∅}〉, 〈(comp‘ndx), 2o〉}); it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc 17679 and df-sets 17140. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝑂)) | ||
| Theorem | oppcterm 49485 | The opposite category of a terminal category is a terminal category. (Contributed by Zhi Wang, 16-Oct-2025.) |
| ⊢ 𝑂 = (oppCat‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝑂 ∈ TermCat) | ||
| Theorem | functermclem 49486 | Lemma for functermc 49487. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾 = 𝐹) & ⊢ (𝜑 → (𝐹𝑅𝐿 ↔ 𝐿 = 𝐺)) ⇒ ⊢ (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc 49487* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) | ||
| Theorem | functermc2 49488* | Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ TermCat) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐶 = (Base‘𝐸) & ⊢ 𝐻 = (Hom ‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐸) & ⊢ 𝐹 = (𝐵 × 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) ⇒ ⊢ (𝜑 → (𝐷 Func 𝐸) = {〈𝐹, 𝐺〉}) | ||
| Theorem | functermceu 49489* | There exists a unique functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | ||
| Theorem | fulltermc 49490* | A functor to a terminal category is full iff all hom-sets of the source category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) ⇒ ⊢ (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ (𝑥𝐻𝑦) = ∅)) | ||
| Theorem | fulltermc2 49491 | Given a full functor to a terminal category, the source category must not have empty hom-sets. (Contributed by Zhi Wang, 17-Oct-2025.) (Proof shortened by Zhi Wang, 6-Nov-2025.) |
| ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐷 ∈ TermCat) & ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝑋𝐻𝑌) = ∅) | ||
| Theorem | termcterm 49492 | A terminal category is a terminal object of the category of small categories. (Contributed by Zhi Wang, 17-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ TermCat) ⇒ ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) | ||
| Theorem | termcterm2 49493 | A terminal object of the category of small categories is a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 23-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → (𝑈 ∩ TermCat) ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ (TermO‘𝐸)) ⇒ ⊢ (𝜑 → 𝐶 ∈ TermCat) | ||
| Theorem | termcterm3 49494 | In the category of small categories, a terminal object is equivalent to a terminal category. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ 𝐸 = (CatCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → (SetCat‘1o) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐶 ∈ TermCat ↔ 𝐶 ∈ (TermO‘𝐸))) | ||
| Theorem | termcciso 49495 | A category is isomorphic to a terminal category iff it itself is terminal. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) ⇒ ⊢ (𝜑 → (𝑌 ∈ TermCat ↔ 𝑋( ≃𝑐 ‘𝐶)𝑌)) | ||
| Theorem | termccisoeu 49496* | The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ TermCat) & ⊢ (𝜑 → 𝑌 ∈ TermCat) ⇒ ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝑋(Iso‘𝐶)𝑌)) | ||
| Theorem | termc2 49497* | If there exists a unique functor from both the category itself and the trivial category, then the category is terminal. Note that the converse also holds, so that it is a biconditional. See the proof of termc 49498 for hints. See also eufunc 49501 and euendfunc2 49506 for some insights on why two categories are sufficient. (Contributed by Zhi Wang, 18-Oct-2025.) (Proof shortened by Zhi Wang, 20-Oct-2025.) |
| ⊢ (∀𝑑 ∈ ({𝐶, (SetCat‘1o)} ∩ Cat)∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶) → 𝐶 ∈ TermCat) | ||
| Theorem | termc 49498* | Alternate definition of TermCat. See also df-termc 49452. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ (𝐶 ∈ TermCat ↔ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝑑 Func 𝐶)) | ||
| Theorem | dftermc2 49499* | Alternate definition of TermCat. See also df-termc 49452 and dftermc3 49510. (Contributed by Zhi Wang, 18-Oct-2025.) |
| ⊢ TermCat = {𝑐 ∣ ∀𝑑 ∈ Cat ∃!𝑓 𝑓 ∈ (𝑑 Func 𝑐)} | ||
| Theorem | eufunclem 49500* | If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ 𝐵 = (Base‘𝐷) ⇒ ⊢ (𝜑 → 𝐵 ≼ 1o) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |