HomeHome Metamath Proof Explorer
Theorem List (p. 495 of 498)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30862)
  Hilbert Space Explorer  Hilbert Space Explorer
(30863-32385)
  Users' Mathboxes  Users' Mathboxes
(32386-49800)
 

Theorem List for Metamath Proof Explorer - 49401-49500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremopf2 49401* The morphism part of the op functor on functor categories. Lemma for fucoppc 49405. (Contributed by Zhi Wang, 18-Nov-2025.)
(𝜑𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐷 ∈ (𝑌𝑁𝑋))       (𝜑 → ((𝑋𝐹𝑌)‘𝐶) = 𝐷)
 
Theoremfucoppclem 49402 Lemma for fucoppc 49405. (Contributed by Zhi Wang, 18-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝑋 ∈ (𝐶 Func 𝐷))    &   (𝜑𝑌 ∈ (𝐶 Func 𝐷))       (𝜑 → (𝑌𝑁𝑋) = ((𝐹𝑋)(𝑂 Nat 𝑃)(𝐹𝑌)))
 
Theoremfucoppcid 49403* The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (oppCat‘𝑄)    &   𝑆 = (𝑂 FuncCat 𝑃)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝑋 ∈ (𝐶 Func 𝐷))       (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝑅)‘𝑋)) = ((Id‘𝑆)‘(𝐹𝑋)))
 
Theoremfucoppcco 49404* The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (oppCat‘𝑄)    &   𝑆 = (𝑂 FuncCat 𝑃)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝐴 ∈ (𝑋(Hom ‘𝑅)𝑌))    &   (𝜑𝐵 ∈ (𝑌(Hom ‘𝑅)𝑍))       (𝜑 → ((𝑋𝐺𝑍)‘(𝐵(⟨𝑋, 𝑌⟩(comp‘𝑅)𝑍)𝐴)) = (((𝑌𝐺𝑍)‘𝐵)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐴)))
 
Theoremfucoppc 49405* The isomorphism from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (oppCat‘𝑄)    &   𝑆 = (𝑂 FuncCat 𝑃)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))    &   𝑇 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝑇)    &   𝐼 = (Iso‘𝑇)    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)    &   (𝜑𝑅𝐵)    &   (𝜑𝑆𝐵)       (𝜑𝐹(𝑅𝐼𝑆)𝐺)
 
Theoremfucoppcffth 49406* A fully faithful functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (oppCat‘𝑄)    &   𝑆 = (𝑂 FuncCat 𝑃)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)       (𝜑𝐹((𝑅 Full 𝑆) ∩ (𝑅 Faith 𝑆))𝐺)
 
Theoremfucoppcfunc 49407* A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝑄 = (𝐶 FuncCat 𝐷)    &   𝑅 = (oppCat‘𝑄)    &   𝑆 = (𝑂 FuncCat 𝑃)    &   𝑁 = (𝐶 Nat 𝐷)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐶 Func 𝐷)))    &   (𝜑𝐺 = (𝑥 ∈ (𝐶 Func 𝐷), 𝑦 ∈ (𝐶 Func 𝐷) ↦ ( I ↾ (𝑦𝑁𝑥))))    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)       (𝜑𝐹(𝑅 Func 𝑆)𝐺)
 
Theoremfucoppccic 49408 The opposite category of functors is isomorphic to the category of opposite functors. (Contributed by Zhi Wang, 18-Nov-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑋 = (oppCat‘(𝐷 FuncCat 𝐸))    &   𝑌 = ((oppCat‘𝐷) FuncCat (oppCat‘𝐸))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐷𝑉)    &   (𝜑𝐸𝑊)       (𝜑𝑋( ≃𝑐𝐶)𝑌)
 
Theoremoppfdiag1 49409 A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))    &   𝐴 = (Base‘𝐶)    &   (𝜑𝑋𝐴)       (𝜑 → (𝐹‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
 
Theoremoppfdiag1a 49410 A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   𝐴 = (Base‘𝐶)    &   (𝜑𝑋𝐴)       (𝜑 → ( oppFunc ‘((1st𝐿)‘𝑋)) = ((1st ‘(𝑂Δfunc𝑃))‘𝑋))
 
Theoremoppfdiag 49411* A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism (fucoppc 49405). (Contributed by Zhi Wang, 19-Nov-2025.)
𝑂 = (oppCat‘𝐶)    &   𝑃 = (oppCat‘𝐷)    &   𝐿 = (𝐶Δfunc𝐷)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐹 = ( oppFunc ↾ (𝐷 Func 𝐶)))    &   𝑁 = (𝐷 Nat 𝐶)    &   (𝜑𝐺 = (𝑚 ∈ (𝐷 Func 𝐶), 𝑛 ∈ (𝐷 Func 𝐶) ↦ ( I ↾ (𝑛𝑁𝑚))))       (𝜑 → (⟨𝐹, 𝐺⟩ ∘func ( oppFunc ‘𝐿)) = (𝑂Δfunc𝑃))
 
21.49.16.2  Thin categories
 
Syntaxcthinc 49412 Extend class notation with the class of thin categories.
class ThinCat
 
Definitiondf-thinc 49413* Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
 
Theoremisthinc 49414* The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
 
Theoremisthinc2 49415* A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
 
Theoremisthinc3 49416* A thin category is a category in which, given a pair of objects 𝑥 and 𝑦 and any two morphisms 𝑓, 𝑔 from 𝑥 to 𝑦, the morphisms are equal. (Contributed by Zhi Wang, 17-Sep-2024.)
𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑥𝐻𝑦)𝑓 = 𝑔))
 
Theoremthincc 49417 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝐶 ∈ ThinCat → 𝐶 ∈ Cat)
 
Theoremthinccd 49418 A thin category is a category (deduction form). (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)       (𝜑𝐶 ∈ Cat)
 
Theoremthincssc 49419 A thin category is a category. (Contributed by Zhi Wang, 17-Sep-2024.)
ThinCat ⊆ Cat
 
Theoremisthincd2lem1 49420* Lemma for isthincd2 49432 and thincmo2 49421. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))       (𝜑𝐹 = 𝐺)
 
Theoremthincmo2 49421 Morphisms in the same hom-set are identical. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑋𝐻𝑌))    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)       (𝜑𝐹 = 𝐺)
 
Theoremthinchom 49422 A non-empty hom-set of a thin category is given by its element. (Contributed by Zhi Wang, 20-Oct-2025.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)       (𝜑 → (𝑋𝐻𝑌) = {𝐹})
 
Theoremthincmo 49423* There is at most one morphism in each hom-set. (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
TheoremthincmoALT 49424* Alternate proof of thincmo 49423. (Contributed by Zhi Wang, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
Theoremthincmod 49425* At most one morphism in each hom-set (deduction form). (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → ∃*𝑓 𝑓 ∈ (𝑋𝐻𝑌))
 
Theoremthincn0eu 49426* In a thin category, a hom-set being non-empty is equivalent to having a unique element. (Contributed by Zhi Wang, 21-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))       (𝜑 → ((𝑋𝐻𝑌) ≠ ∅ ↔ ∃!𝑓 𝑓 ∈ (𝑋𝐻𝑌)))
 
Theoremthincid 49427 In a thin category, a morphism from an object to itself is an identity morphism. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &    1 = (Id‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑋))       (𝜑𝐹 = ( 1𝑋))
 
Theoremthincmon 49428 In a thin category, all morphisms are monomorphisms. Example 7.33(9) of [Adamek] p. 110. The converse does not hold. See grptcmon 49588. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑀 = (Mono‘𝐶)       (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))
 
Theoremthincepi 49429 In a thin category, all morphisms are epimorphisms. The converse does not hold. See grptcepi 49589. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐸 = (Epi‘𝐶)       (𝜑 → (𝑋𝐸𝑌) = (𝑋𝐻𝑌))
 
Theoremisthincd2lem2 49430* Lemma for isthincd2 49432. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 ∈ (𝑌𝐻𝑍))    &   (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))       (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ (𝑋𝐻𝑍))
 
Theoremisthincd 49431* The predicate "is a thin category" (deduction form). (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐶 ∈ ThinCat)
 
Theoremisthincd2 49432* The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))    &   (𝜑· = (comp‘𝐶))    &   (𝜑𝐶𝑉)    &   (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))    &   ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))    &   ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
 
Theoremoppcthin 49433 The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024.)
𝑂 = (oppCat‘𝐶)       (𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat)
 
Theoremoppcthinco 49434 If the opposite category of a thin category has the same base and hom-sets as the original category, then it has the same composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)    &   (𝜑 → (Homf𝐶) = (Homf𝑂))       (𝜑 → (compf𝐶) = (compf𝑂))
 
Theoremoppcthinendc 49435* The opposite category of a thin category whose morphisms are all endomorphisms has the same base, hom-sets (oppcendc 49013) and composition operation as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))       (𝜑 → (compf𝐶) = (compf𝑂))
 
TheoremoppcthinendcALT 49436* Alternate proof of oppcthinendc 49435. (Contributed by Zhi Wang, 16-Oct-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑦 → (𝑥𝐻𝑦) = ∅))       (𝜑 → (compf𝐶) = (compf𝑂))
 
Theoremthincpropd 49437 Two structures with the same base, hom-sets and composition operation are either both thin categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)       (𝜑 → (𝐶 ∈ ThinCat ↔ 𝐷 ∈ ThinCat))
 
Theoremsubthinc 49438 A subcategory of a thin category is thin. (Contributed by Zhi Wang, 30-Sep-2024.)
𝐷 = (𝐶cat 𝐽)    &   (𝜑𝐽 ∈ (Subcat‘𝐶))    &   (𝜑𝐶 ∈ ThinCat)       (𝜑𝐷 ∈ ThinCat)
 
Theoremfuncthinclem1 49439* Lemma for functhinc 49443. Given the object part, there is only one possible morphism part such that the mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))       (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝐺𝑤):(𝑧𝐻𝑤)⟶((𝐹𝑧)𝐽(𝐹𝑤))) ↔ 𝐺 = 𝐾))
 
Theoremfuncthinclem2 49440* Lemma for functhinc 49443. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → ∀𝑥𝐵𝑦𝐵 (((𝐹𝑥)𝐽(𝐹𝑦)) = ∅ → (𝑥𝐻𝑦) = ∅))       (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))
 
Theoremfuncthinclem3 49441* Lemma for functhinc 49443. The mapped morphism is in its corresponding hom-set. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑀 ∈ (𝑋𝐻𝑌))    &   (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦)))))    &   (𝜑 → (((𝐹𝑋)𝐽(𝐹𝑌)) = ∅ → (𝑋𝐻𝑌) = ∅))    &   (𝜑 → ∃*𝑛 𝑛 ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))       (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
 
Theoremfuncthinclem4 49442* Lemma for functhinc 49443. Other requirements on the morphism part are automatically satisfied. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))    &    1 = (Id‘𝐷)    &   𝐼 = (Id‘𝐸)    &    · = (comp‘𝐷)    &   𝑂 = (comp‘𝐸)       ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘( 1𝑎)) = (𝐼‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑚 ∈ (𝑎𝐻𝑏)∀𝑛 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑛(⟨𝑎, 𝑏· 𝑐)𝑚)) = (((𝑏𝐺𝑐)‘𝑛)(⟨(𝐹𝑎), (𝐹𝑏)⟩𝑂(𝐹𝑐))((𝑎𝐺𝑏)‘𝑚))))
 
Theoremfuncthinc 49443* A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 49007), and can be obtained from funcf2 17775, f002 48848, and ralrimivva 3172. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐷)    &   𝐶 = (Base‘𝐸)    &   𝐻 = (Hom ‘𝐷)    &   𝐽 = (Hom ‘𝐸)    &   (𝜑𝐷 ∈ Cat)    &   (𝜑𝐸 ∈ ThinCat)    &   (𝜑𝐹:𝐵𝐶)    &   𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))    &   (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))       (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
 
Theoremfuncthincfun 49444 A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ Cat)    &   (𝜑𝐷 ∈ ThinCat)       (𝜑 → Fun (𝐶 Func 𝐷))
 
Theoremfullthinc 49445* A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐷 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑 → (𝐹(𝐶 Full 𝐷)𝐺 ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐻𝑦) = ∅ → ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅)))
 
Theoremfullthinc2 49446 A full functor to a thin category maps empty hom-sets to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024.)
𝐵 = (Base‘𝐶)    &   𝐽 = (Hom ‘𝐷)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐷 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Full 𝐷)𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋𝐻𝑌) = ∅ ↔ ((𝐹𝑋)𝐽(𝐹𝑌)) = ∅))
 
Theoremthincfth 49447 A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024.)
(𝜑𝐶 ∈ ThinCat)    &   (𝜑𝐹(𝐶 Func 𝐷)𝐺)       (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
 
Theoremthincciso 49448* Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 16-Oct-2024.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   𝐻 = (Hom ‘𝑋)    &   𝐽 = (Hom ‘𝑌)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋 ∈ ThinCat)    &   (𝜑𝑌 ∈ ThinCat)       (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓(∀𝑥𝑅𝑦𝑅 ((𝑥𝐻𝑦) = ∅ ↔ ((𝑓𝑥)𝐽(𝑓𝑦)) = ∅) ∧ 𝑓:𝑅1-1-onto𝑆)))
 
Theoremthinccisod 49449* Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of [Adamek] p. 33. (Contributed by Zhi Wang, 22-Sep-2025.)
𝐶 = (CatCat‘𝑈)    &   𝑅 = (Base‘𝑋)    &   𝑆 = (Base‘𝑌)    &   𝐻 = (Hom ‘𝑋)    &   𝐽 = (Hom ‘𝑌)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑈)    &   (𝜑𝑌𝑈)    &   (𝜑𝑋 ∈ ThinCat)    &   (𝜑𝑌 ∈ ThinCat)    &   (𝜑𝐹:𝑅1-1-onto𝑆)    &   ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ((𝑥𝐻𝑦) = ∅ ↔ ((𝐹𝑥)𝐽(𝐹𝑦)) = ∅))       (𝜑𝑋( ≃𝑐𝐶)𝑌)
 
Theoremthincciso2 49450 Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &   (𝜑𝑌 ∈ ThinCat)       (𝜑𝑋 ∈ ThinCat)
 
Theoremthincciso3 49451 Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐼𝑌))    &   (𝜑𝑋 ∈ ThinCat)       (𝜑𝑌 ∈ ThinCat)
 
Theoremthincciso4 49452 Two isomorphic categories are either both thin or neither. Note that "thincciso2.u" is redundant thanks to elbasfv 17126. (Contributed by Zhi Wang, 18-Oct-2025.)
𝐶 = (CatCat‘𝑈)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋( ≃𝑐𝐶)𝑌)       (𝜑 → (𝑋 ∈ ThinCat ↔ 𝑌 ∈ ThinCat))
 
Theorem0thincg 49453 Any structure with an empty set of objects is a thin category. (Contributed by Zhi Wang, 17-Sep-2024.)
((𝐶𝑉 ∧ ∅ = (Base‘𝐶)) → 𝐶 ∈ ThinCat)
 
Theorem0thinc 49454 The empty category (see 0cat 17595) is thin. (Contributed by Zhi Wang, 17-Sep-2024.)
∅ ∈ ThinCat
 
Theoremindcthing 49455* An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = {𝐹})       (𝜑𝐶 ∈ ThinCat)
 
Theoremdiscthing 49456* A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of [Adamek] p. 33. (Contributed by Zhi Wang, 11-Nov-2025.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑𝐻 = (Hom ‘𝐶))    &   (𝜑𝐶 ∈ Cat)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐻𝑦) = if(𝑥 = 𝑦, {𝐼}, ∅))       (𝜑𝐶 ∈ ThinCat)
 
Theoremindthinc 49457* An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are . This is a special case of prsthinc 49459, where = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑𝐶𝑉)       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
TheoremindthincALT 49458* An alternate proof of indthinc 49457 assuming more axioms including ax-pow 5304 and ax-un 7671. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑𝐶𝑉)       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
Theoremprsthinc 49459* Preordered sets as categories. Similar to example 3.3(4.d) of [Adamek] p. 24, but the hom-sets are not pairwise disjoint. One can define a functor from the category of prosets to the category of small thin categories. See catprs 49006 and catprs2 49007 for inducing a preorder from a category. Example 3.26(2) of [Adamek] p. 33 indicates that it induces a bijection from the equivalence class of isomorphic small thin categories to the equivalence class of order-isomorphic preordered sets. (Contributed by Zhi Wang, 18-Sep-2024.)
(𝜑𝐵 = (Base‘𝐶))    &   (𝜑 → ( × {1o}) = (Hom ‘𝐶))    &   (𝜑 → ∅ = (comp‘𝐶))    &   (𝜑 = (le‘𝐶))    &   (𝜑𝐶 ∈ Proset )       (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
 
Theoremsetcthin 49460* A category of sets all of whose objects contain at most one element is thin. (Contributed by Zhi Wang, 20-Sep-2024.)
(𝜑𝐶 = (SetCat‘𝑈))    &   (𝜑𝑈𝑉)    &   (𝜑 → ∀𝑥𝑈 ∃*𝑝 𝑝𝑥)       (𝜑𝐶 ∈ ThinCat)
 
Theoremsetc2othin 49461 The category (SetCat‘2o) is thin. A special case of setcthin 49460. (Contributed by Zhi Wang, 20-Sep-2024.)
(SetCat‘2o) ∈ ThinCat
 
Theoremthincsect 49462 In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))))
 
Theoremthincsect2 49463 In a thin category, 𝐹 is a section of 𝐺 iff 𝐺 is a section of 𝐹. Example 7.25(4) of [Adamek] p. 108. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)       (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
 
Theoremthincinv 49464 In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺. Example 7.20(7) of [Adamek] p. 107. (Contributed by Zhi Wang, 24-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝑆 = (Sect‘𝐶)    &   𝑁 = (Inv‘𝐶)       (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑆𝑌)𝐺))
 
Theoremthinciso 49465 In a thin category, 𝐹:𝑋𝑌 is an isomorphism iff there is a morphism from 𝑌 to 𝑋. (Contributed by Zhi Wang, 25-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   𝐼 = (Iso‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))       (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝑌𝐻𝑋) ≠ ∅))
 
Theoremthinccic 49466 In a thin category, two objects are isomorphic iff there are morphisms between them in both directions. (Contributed by Zhi Wang, 25-Sep-2024.)
(𝜑𝐶 ∈ ThinCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ((𝑋𝐻𝑌) ≠ ∅ ∧ (𝑌𝐻𝑋) ≠ ∅)))
 
21.49.16.3  Terminal categories
 
Syntaxctermc 49467 Extend class notation with the class of terminal categories.
class TermCat
 
Definitiondf-termc 49468* Definition of the proper class (termcnex 49571) of terminal categories, or final categories, i.e., categories with exactly one object and exactly one morphism, the latter of which is an identity morphism (termcid 49481). These are exactly the thin categories with a singleton base set. Example 3.3(4.c) of [Adamek] p. 24.

As the name indicates, TermCat is the class of all terminal objects in the category of small categories (termcterm3 49510). TermCat is also the class of categories to which all categories have exactly one functor (dftermc2 49515). See also dftermc3 49526 where TermCat is defined as categories with exactly one disjointified arrow.

Unlike https://ncatlab.org/nlab/show/terminal+category 49526, we reserve the term "trivial category" for (SetCat‘1o), justified by setc1oterm 49486.

Followed directly from the definition, terminal categories are thin (termcthin 49472). The opposite category of a terminal category is "almost" itself (oppctermco 49500). Any category 𝐶 is isomorphic to the category of functors from a terminal category to the category 𝐶 (diagcic 49535).

Having defined the terminal category, we can then use it to define the universal property of initial (dfinito4 49496) and terminal objects (dftermo4 49497). The universal properties provide an alternate proof of initoeu1 17918, termoeu1 17925, initoeu2 17923, and termoeu2 49233. Since terminal categories are terminal objects, all terminal categories are mutually isomorphic (termcciso 49511).

The dual concept is the initial category, or the empty category (Example 7.2(3) of [Adamek] p. 101). See 0catg 17594, 0thincg 49453, func0g 49084, 0funcg 49080, and initc 49086.

(Contributed by Zhi Wang, 16-Oct-2025.)

TermCat = {𝑐 ∈ ThinCat ∣ ∃𝑥(Base‘𝑐) = {𝑥}}
 
Theoremistermc 49469* The predicate "is a terminal category". A terminal category is a thin category with a singleton base set. (Contributed by Zhi Wang, 16-Oct-2025.)
𝐵 = (Base‘𝐶)       (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
 
Theoremistermc2 49470* The predicate "is a terminal category". A terminal category is a thin category with exactly one object. (Contributed by Zhi Wang, 16-Oct-2025.)
𝐵 = (Base‘𝐶)       (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃!𝑥 𝑥𝐵))
 
Theoremistermc3 49471 The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8950, map1 8965, and euen1b 8953. (Contributed by Zhi Wang, 16-Oct-2025.)
𝐵 = (Base‘𝐶)       (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o))
 
Theoremtermcthin 49472 A terminal category is a thin category. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝐶 ∈ TermCat → 𝐶 ∈ ThinCat)
 
Theoremtermcthind 49473 A terminal category is a thin category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)       (𝜑𝐶 ∈ ThinCat)
 
Theoremtermccd 49474 A terminal category is a category (deduction form). (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)       (𝜑𝐶 ∈ Cat)
 
Theoremtermcbas 49475* The base of a terminal category is a singleton. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)       (𝜑 → ∃𝑥 𝐵 = {𝑥})
 
Theoremtermco 49476 The object of a terminal category. (Contributed by Zhi Wang, 17-Nov-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)       (𝜑 𝐵𝐵)
 
Theoremtermcbas2 49477 The base of a terminal category is given by its object. (Contributed by Zhi Wang, 20-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)       (𝜑𝐵 = {𝑋})
 
Theoremtermcbasmo 49478 Two objects in a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑𝑋 = 𝑌)
 
Theoremtermchomn0 49479 All hom-sets of a terminal category are non-empty. (Contributed by Zhi Wang, 17-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)       (𝜑 → ¬ (𝑋𝐻𝑌) = ∅)
 
Theoremtermchommo 49480 All morphisms of a terminal category are identical. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)    &   (𝜑𝐺 ∈ (𝑍𝐻𝑊))       (𝜑𝐹 = 𝐺)
 
Theoremtermcid 49481 The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &    1 = (Id‘𝐶)       (𝜑𝐹 = ( 1𝑋))
 
Theoremtermcid2 49482 The morphism of a terminal category is an identity morphism. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &   (𝜑𝐹 ∈ (𝑋𝐻𝑌))    &    1 = (Id‘𝐶)       (𝜑𝐹 = ( 1𝑌))
 
Theoremtermchom 49483 The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 20-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)       (𝜑 → (𝑋𝐻𝑌) = {( 1𝑋)})
 
Theoremtermchom2 49484 The hom-set of a terminal category is a singleton of the identity morphism. (Contributed by Zhi Wang, 21-Oct-2025.)
(𝜑𝐶 ∈ TermCat)    &   𝐵 = (Base‘𝐶)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   𝐻 = (Hom ‘𝐶)    &    1 = (Id‘𝐶)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋𝐻𝑌) = {( 1𝑍)})
 
Theoremsetcsnterm 49485 The category of one set, either a singleton set or an empty set, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.)
(SetCat‘{{𝐴}}) ∈ TermCat
 
Theoremsetc1oterm 49486 The category (SetCat‘1o), i.e., the trivial category, is terminal. (Contributed by Zhi Wang, 18-Oct-2025.)
(SetCat‘1o) ∈ TermCat
 
Theoremsetc1obas 49487 The base of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)       1o = (Base‘ 1 )
 
Theoremsetc1ohomfval 49488 Set of morphisms of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)       {⟨∅, ∅, 1o⟩} = (Hom ‘ 1 )
 
Theoremsetc1ocofval 49489 Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)       {⟨⟨∅, ∅⟩, ∅, {⟨∅, ∅, ∅⟩}⟩} = (comp‘ 1 )
 
Theoremsetc1oid 49490 The identity morphism of the trivial category. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)    &   𝐼 = (Id‘ 1 )       (𝐼‘∅) = ∅
 
Theoremfuncsetc1ocl 49491 The functor to the trivial category. The converse is also true due to reverse closure. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)    &   𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)    &   (𝜑𝐶 ∈ Cat)       (𝜑𝐹 ∈ (𝐶 Func 1 ))
 
Theoremfuncsetc1o 49492* Value of the functor to the trivial category. The converse is also true because 𝐹 would be the empty set if 𝐶 were not a category; and the empty set cannot equal an ordered pair of two sets. (Contributed by Zhi Wang, 22-Oct-2025.)
1 = (SetCat‘1o)    &   𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)    &   (𝜑𝐶 ∈ Cat)    &   𝐵 = (Base‘𝐶)    &   𝐻 = (Hom ‘𝐶)       (𝜑𝐹 = ⟨(𝐵 × 1o), (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × 1o))⟩)
 
Theoremisinito2lem 49493 The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
1 = (SetCat‘1o)    &   𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)    &   (𝜑𝐶 ∈ Cat)    &   (𝜑𝐼 ∈ (Base‘𝐶))       (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅))
 
Theoremisinito2 49494 The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
1 = (SetCat‘1o)    &   𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)       (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼(𝐹(𝐶 UP 1 )∅)∅)
 
Theoremisinito3 49495 The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 23-Oct-2025.)
1 = (SetCat‘1o)    &   𝐹 = ((1st ‘( 1 Δfunc𝐶))‘∅)       (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )∅))
 
Theoremdfinito4 49496* An alternate definition of df-inito 17891 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17891. (Contributed by Zhi Wang, 23-Oct-2025.)
InitO = (𝑐 ∈ Cat ↦ (SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑐))‘∅) / 𝑓dom (𝑓(𝑐 UP 𝑑)∅))
 
Theoremdftermo4 49497* An alternate definition of df-termo 17892 using universal property. See also the "Equivalent formulations" section of https://en.wikipedia.org/wiki/Initial_and_terminal_objects 17892. (Contributed by Zhi Wang, 23-Oct-2025.)
TermO = (𝑐 ∈ Cat ↦ (oppCat‘𝑐) / 𝑜(SetCat‘1o) / 𝑑((1st ‘(𝑑Δfunc𝑜))‘∅) / 𝑓dom (𝑓(𝑜 UP 𝑑)∅))
 
Theoremtermcpropd 49498 Two structures with the same base, hom-sets and composition operation are either both terminal categories or neither. (Contributed by Zhi Wang, 16-Oct-2025.)
(𝜑 → (Homf𝐶) = (Homf𝐷))    &   (𝜑 → (compf𝐶) = (compf𝐷))    &   (𝜑𝐶𝑉)    &   (𝜑𝐷𝑊)       (𝜑 → (𝐶 ∈ TermCat ↔ 𝐷 ∈ TermCat))
 
Theoremoppctermhom 49499 The opposite category of a terminal category has the same base and hom-sets as the original category. (Contributed by Zhi Wang, 16-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ TermCat)       (𝜑 → (Homf𝐶) = (Homf𝑂))
 
Theoremoppctermco 49500 The opposite category of a terminal category has the same base, hom-sets and composition operation as the original category. Note that 𝐶 = 𝑂 cannot be proved because 𝐶 might not even be a function. For example, let 𝐶 be ({⟨(Base‘ndx), {∅}⟩, ⟨(Hom ‘ndx), ((V × V) × {{∅}})⟩} ∪ {⟨(comp‘ndx), {∅}⟩, ⟨(comp‘ndx), 2o⟩}); it should be a terminal category, but the opposite category is not itself. See the definitions df-oppc 17618 and df-sets 17075. (Contributed by Zhi Wang, 16-Oct-2025.)
𝑂 = (oppCat‘𝐶)    &   (𝜑𝐶 ∈ TermCat)       (𝜑 → (compf𝐶) = (compf𝑂))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49700 498 49701-49800
  Copyright terms: Public domain < Previous  Next >