| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlmd | Structured version Visualization version GIF version | ||
| Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlmd | ⊢ Rel dom Limit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmd 49650 | . 2 ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) | |
| 2 | 1 | reldmmpo 7487 | 1 ⊢ Rel dom Limit |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ↦ cmpt 5176 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 oppCatcoppc 17636 Func cfunc 17780 FuncCat cfuc 17871 Δfunccdiag 18137 oppFunc coppf 49127 UP cup 49178 Limit clmd 49648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-dm 5633 df-oprab 7357 df-mpo 7358 df-lmd 49650 |
| This theorem is referenced by: lmdfval 49654 |
| Copyright terms: Public domain | W3C validator |