Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmlmd Structured version   Visualization version   GIF version

Theorem reldmlmd 49640
Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
reldmlmd Rel dom Limit

Proof of Theorem reldmlmd
Dummy variables 𝑐 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmd 49638 . 2 Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
21reldmmpo 7526 1 Rel dom Limit
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3450  cmpt 5191  dom cdm 5641  Rel wrel 5646  cfv 6514  (class class class)co 7390  oppCatcoppc 17679   Func cfunc 17823   FuncCat cfuc 17914  Δfunccdiag 18180   oppFunc coppf 49115   UP cup 49166   Limit clmd 49636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-dm 5651  df-oprab 7394  df-mpo 7395  df-lmd 49638
This theorem is referenced by:  lmdfval  49642
  Copyright terms: Public domain W3C validator