| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlmd | Structured version Visualization version GIF version | ||
| Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlmd | ⊢ Rel dom Limit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmd 49756 | . 2 ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) | |
| 2 | 1 | reldmmpo 7480 | 1 ⊢ Rel dom Limit |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ↦ cmpt 5170 dom cdm 5614 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 oppCatcoppc 17617 Func cfunc 17761 FuncCat cfuc 17852 Δfunccdiag 18118 oppFunc coppf 49233 UP cup 49284 Limit clmd 49754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-dm 5624 df-oprab 7350 df-mpo 7351 df-lmd 49756 |
| This theorem is referenced by: lmdfval 49760 |
| Copyright terms: Public domain | W3C validator |