| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlmd | Structured version Visualization version GIF version | ||
| Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlmd | ⊢ Rel dom Limit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmd 49467 | . 2 ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ ((oppFunc‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) | |
| 2 | 1 | reldmmpo 7539 | 1 ⊢ Rel dom Limit |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ↦ cmpt 5201 dom cdm 5654 Rel wrel 5659 ‘cfv 6530 (class class class)co 7403 oppCatcoppc 17721 Func cfunc 17865 FuncCat cfuc 17956 Δfunccdiag 18222 oppFunccoppf 49019 UP cup 49056 Limit clmd 49465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-oprab 7407 df-mpo 7408 df-lmd 49467 |
| This theorem is referenced by: lmdfval 49471 |
| Copyright terms: Public domain | W3C validator |