| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reldmlmd | Structured version Visualization version GIF version | ||
| Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.) |
| Ref | Expression |
|---|---|
| reldmlmd | ⊢ Rel dom Limit |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lmd 49638 | . 2 ⊢ Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓))) | |
| 2 | 1 | reldmmpo 7526 | 1 ⊢ Rel dom Limit |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3450 ↦ cmpt 5191 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 (class class class)co 7390 oppCatcoppc 17679 Func cfunc 17823 FuncCat cfuc 17914 Δfunccdiag 18180 oppFunc coppf 49115 UP cup 49166 Limit clmd 49636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-dm 5651 df-oprab 7394 df-mpo 7395 df-lmd 49638 |
| This theorem is referenced by: lmdfval 49642 |
| Copyright terms: Public domain | W3C validator |