Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmlmd Structured version   Visualization version   GIF version

Theorem reldmlmd 49652
Description: The domain of Limit is a relation. (Contributed by Zhi Wang, 12-Nov-2025.)
Assertion
Ref Expression
reldmlmd Rel dom Limit

Proof of Theorem reldmlmd
Dummy variables 𝑐 𝑑 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lmd 49650 . 2 Limit = (𝑐 ∈ V, 𝑑 ∈ V ↦ (𝑓 ∈ (𝑑 Func 𝑐) ↦ (( oppFunc ‘(𝑐Δfunc𝑑))((oppCat‘𝑐) UP (oppCat‘(𝑑 FuncCat 𝑐)))𝑓)))
21reldmmpo 7487 1 Rel dom Limit
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3438  cmpt 5176  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  oppCatcoppc 17636   Func cfunc 17780   FuncCat cfuc 17871  Δfunccdiag 18137   oppFunc coppf 49127   UP cup 49178   Limit clmd 49648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-dm 5633  df-oprab 7357  df-mpo 7358  df-lmd 49650
This theorem is referenced by:  lmdfval  49654
  Copyright terms: Public domain W3C validator