Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmd Structured version   Visualization version   GIF version

Theorem islmd 49658
Description: The universal property of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
islmd (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)   𝐻(𝑥,𝑎)

Proof of Theorem islmd
StepHypRef Expression
1 lmdfval2 49648 . . . 4 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
2 islmd.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
32fveq2i 6864 . . . . 5 ( oppFunc ‘𝐿) = ( oppFunc ‘(𝐶Δfunc𝐷))
43oveq1i 7400 . . . 4 (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
51, 4eqtr4i 2756 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
65breqi 5116 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
7 id 22 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
87up1st2nd 49178 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st ‘( oppFunc ‘𝐿)), (2nd ‘( oppFunc ‘𝐿))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
9 eqid 2730 . . . . 5 (oppCat‘𝐶) = (oppCat‘𝐶)
10 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
118, 9, 10oppcuprcl4 49192 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋𝐴)
12 eqid 2730 . . . . . . . 8 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
13 eqid 2730 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
1413fucbas 17932 . . . . . . . 8 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
158, 12, 14oppcuprcl3 49193 . . . . . . 7 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝐹 ∈ (𝐷 Func 𝐶))
16 simpr 484 . . . . . . . . . . . . 13 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
1716func1st2nd 49069 . . . . . . . . . . . 12 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1817funcrcl3 49073 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
1917funcrcl2 49072 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐷 ∈ Cat)
202, 18, 19, 13diagcl 18209 . . . . . . . . . 10 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
21 oppfval2 49130 . . . . . . . . . 10 (𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2220, 21syl 17 . . . . . . . . 9 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2322oveq1d 7405 . . . . . . . 8 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
2423breqd 5121 . . . . . . 7 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2511, 15, 24syl2anc 584 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2625ibi 267 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
27 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
2813, 27fuchom 17933 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
2926, 12, 28oppcuprcl5 49194 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
3011, 29jca 511 . . 3 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)))
3127natrcl 17922 . . . . . 6 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → (((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶) ∧ 𝐹 ∈ (𝐷 Func 𝐶)))
3231simprd 495 . . . . 5 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))
3332, 24sylan2 593 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
34 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
35 eqid 2730 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
3632adantl 481 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
3732, 20sylan2 593 . . . . . 6 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3837func1st2nd 49069 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
39 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑋𝐴)
40 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
4110, 14, 34, 28, 35, 36, 38, 39, 40, 9, 12oppcup 49200 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚))))
42 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
4332, 18sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐶 ∈ Cat)
4443ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐶 ∈ Cat)
4532, 19sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐷 ∈ Cat)
4645ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐷 ∈ Cat)
47 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑥𝐴)
4839ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑋𝐴)
49 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑚 ∈ (𝑥𝐻𝑋))
502, 10, 42, 34, 44, 46, 47, 48, 49diag2 18213 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → ((𝑥(2nd𝐿)𝑋)‘𝑚) = (𝐵 × {𝑚}))
5150oveq2d 7406 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})))
52 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
532, 10, 42, 34, 44, 46, 47, 48, 49, 27diag2cl 18214 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑥)𝑁((1st𝐿)‘𝑋)))
5440ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
5513, 27, 42, 52, 35, 53, 54fucco 17934 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))))
5644adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
5746adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
5847adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑥𝐴)
59 eqid 2730 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
60 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑗𝐵)
612, 56, 57, 10, 58, 59, 42, 60diag11 18211 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
6248adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑋𝐴)
63 eqid 2730 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
642, 56, 57, 10, 62, 63, 42, 60diag11 18211 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
6561, 64opeq12d 4848 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨𝑥, 𝑋⟩)
6665oveq1d 7405 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗)) = (⟨𝑥, 𝑋· ((1st𝐹)‘𝑗)))
67 eqidd 2731 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
68 vex 3454 . . . . . . . . . . . 12 𝑚 ∈ V
6968fvconst2 7181 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7069adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7166, 67, 70oveq123d 7411 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)) = ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))
7271mpteq2dva 5203 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7351, 55, 723eqtrd 2769 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7473eqeq2d 2741 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ 𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7574reubidva 3372 . . . . 5 (((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) → (∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
76752ralbidva 3200 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7733, 41, 763bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7830, 77biadanii 821 . 2 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
796, 78bitri 275 1 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  {csn 4592  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  tpos ctpos 8207  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  oppCatcoppc 17679   Func cfunc 17823   Nat cnat 17913   FuncCat cfuc 17914  Δfunccdiag 18180   oppFunc coppf 49115   UP cup 49166   Limit clmd 49636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-hom 17251  df-cco 17252  df-cat 17636  df-cid 17637  df-oppc 17680  df-func 17827  df-nat 17915  df-fuc 17916  df-xpc 18140  df-1stf 18141  df-curf 18182  df-diag 18184  df-oppf 49116  df-up 49167  df-lmd 49638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator