Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmd Structured version   Visualization version   GIF version

Theorem islmd 49660
Description: The universal property of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
islmd (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)   𝐻(𝑥,𝑎)

Proof of Theorem islmd
StepHypRef Expression
1 lmdfval2 49650 . . . 4 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
2 islmd.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
32fveq2i 6825 . . . . 5 ( oppFunc ‘𝐿) = ( oppFunc ‘(𝐶Δfunc𝐷))
43oveq1i 7359 . . . 4 (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
51, 4eqtr4i 2755 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
65breqi 5098 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
7 id 22 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
87up1st2nd 49180 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st ‘( oppFunc ‘𝐿)), (2nd ‘( oppFunc ‘𝐿))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
9 eqid 2729 . . . . 5 (oppCat‘𝐶) = (oppCat‘𝐶)
10 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
118, 9, 10oppcuprcl4 49194 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋𝐴)
12 eqid 2729 . . . . . . . 8 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
13 eqid 2729 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
1413fucbas 17870 . . . . . . . 8 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
158, 12, 14oppcuprcl3 49195 . . . . . . 7 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝐹 ∈ (𝐷 Func 𝐶))
16 simpr 484 . . . . . . . . . . . . 13 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
1716func1st2nd 49071 . . . . . . . . . . . 12 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1817funcrcl3 49075 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
1917funcrcl2 49074 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐷 ∈ Cat)
202, 18, 19, 13diagcl 18147 . . . . . . . . . 10 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
21 oppfval2 49132 . . . . . . . . . 10 (𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2220, 21syl 17 . . . . . . . . 9 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2322oveq1d 7364 . . . . . . . 8 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
2423breqd 5103 . . . . . . 7 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2511, 15, 24syl2anc 584 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2625ibi 267 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
27 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
2813, 27fuchom 17871 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
2926, 12, 28oppcuprcl5 49196 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
3011, 29jca 511 . . 3 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)))
3127natrcl 17860 . . . . . 6 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → (((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶) ∧ 𝐹 ∈ (𝐷 Func 𝐶)))
3231simprd 495 . . . . 5 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))
3332, 24sylan2 593 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
34 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
35 eqid 2729 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
3632adantl 481 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
3732, 20sylan2 593 . . . . . 6 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3837func1st2nd 49071 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
39 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑋𝐴)
40 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
4110, 14, 34, 28, 35, 36, 38, 39, 40, 9, 12oppcup 49202 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚))))
42 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
4332, 18sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐶 ∈ Cat)
4443ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐶 ∈ Cat)
4532, 19sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐷 ∈ Cat)
4645ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐷 ∈ Cat)
47 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑥𝐴)
4839ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑋𝐴)
49 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑚 ∈ (𝑥𝐻𝑋))
502, 10, 42, 34, 44, 46, 47, 48, 49diag2 18151 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → ((𝑥(2nd𝐿)𝑋)‘𝑚) = (𝐵 × {𝑚}))
5150oveq2d 7365 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})))
52 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
532, 10, 42, 34, 44, 46, 47, 48, 49, 27diag2cl 18152 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑥)𝑁((1st𝐿)‘𝑋)))
5440ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
5513, 27, 42, 52, 35, 53, 54fucco 17872 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))))
5644adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
5746adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
5847adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑥𝐴)
59 eqid 2729 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
60 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑗𝐵)
612, 56, 57, 10, 58, 59, 42, 60diag11 18149 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
6248adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑋𝐴)
63 eqid 2729 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
642, 56, 57, 10, 62, 63, 42, 60diag11 18149 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
6561, 64opeq12d 4832 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨𝑥, 𝑋⟩)
6665oveq1d 7364 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗)) = (⟨𝑥, 𝑋· ((1st𝐹)‘𝑗)))
67 eqidd 2730 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
68 vex 3440 . . . . . . . . . . . 12 𝑚 ∈ V
6968fvconst2 7140 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7069adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7166, 67, 70oveq123d 7370 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)) = ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))
7271mpteq2dva 5185 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7351, 55, 723eqtrd 2768 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7473eqeq2d 2740 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ 𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7574reubidva 3359 . . . . 5 (((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) → (∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
76752ralbidva 3191 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7733, 41, 763bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7830, 77biadanii 821 . 2 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
796, 78bitri 275 1 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3341  {csn 4577  cop 4583   class class class wbr 5092  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  tpos ctpos 8158  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  oppCatcoppc 17617   Func cfunc 17761   Nat cnat 17851   FuncCat cfuc 17852  Δfunccdiag 18118   oppFunc coppf 49117   UP cup 49168   Limit clmd 49638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-oppc 17618  df-func 17765  df-nat 17853  df-fuc 17854  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122  df-oppf 49118  df-up 49169  df-lmd 49640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator