Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmd Structured version   Visualization version   GIF version

Theorem islmd 49765
Description: The universal property of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
islmd (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)   𝐻(𝑥,𝑎)

Proof of Theorem islmd
StepHypRef Expression
1 lmdfval2 49755 . . . 4 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
2 islmd.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
32fveq2i 6825 . . . . 5 ( oppFunc ‘𝐿) = ( oppFunc ‘(𝐶Δfunc𝐷))
43oveq1i 7356 . . . 4 (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
51, 4eqtr4i 2757 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
65breqi 5095 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
7 id 22 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
87up1st2nd 49285 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st ‘( oppFunc ‘𝐿)), (2nd ‘( oppFunc ‘𝐿))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
9 eqid 2731 . . . . 5 (oppCat‘𝐶) = (oppCat‘𝐶)
10 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
118, 9, 10oppcuprcl4 49299 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋𝐴)
12 eqid 2731 . . . . . . . 8 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
13 eqid 2731 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
1413fucbas 17870 . . . . . . . 8 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
158, 12, 14oppcuprcl3 49300 . . . . . . 7 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝐹 ∈ (𝐷 Func 𝐶))
16 simpr 484 . . . . . . . . . . . . 13 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
1716func1st2nd 49176 . . . . . . . . . . . 12 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1817funcrcl3 49180 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
1917funcrcl2 49179 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐷 ∈ Cat)
202, 18, 19, 13diagcl 18147 . . . . . . . . . 10 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
21 oppfval2 49237 . . . . . . . . . 10 (𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2220, 21syl 17 . . . . . . . . 9 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2322oveq1d 7361 . . . . . . . 8 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
2423breqd 5100 . . . . . . 7 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2511, 15, 24syl2anc 584 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2625ibi 267 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
27 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
2813, 27fuchom 17871 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
2926, 12, 28oppcuprcl5 49301 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
3011, 29jca 511 . . 3 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)))
3127natrcl 17860 . . . . . 6 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → (((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶) ∧ 𝐹 ∈ (𝐷 Func 𝐶)))
3231simprd 495 . . . . 5 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))
3332, 24sylan2 593 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
34 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
35 eqid 2731 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
3632adantl 481 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
3732, 20sylan2 593 . . . . . 6 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3837func1st2nd 49176 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
39 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑋𝐴)
40 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
4110, 14, 34, 28, 35, 36, 38, 39, 40, 9, 12oppcup 49307 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚))))
42 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
4332, 18sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐶 ∈ Cat)
4443ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐶 ∈ Cat)
4532, 19sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐷 ∈ Cat)
4645ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐷 ∈ Cat)
47 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑥𝐴)
4839ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑋𝐴)
49 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑚 ∈ (𝑥𝐻𝑋))
502, 10, 42, 34, 44, 46, 47, 48, 49diag2 18151 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → ((𝑥(2nd𝐿)𝑋)‘𝑚) = (𝐵 × {𝑚}))
5150oveq2d 7362 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})))
52 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
532, 10, 42, 34, 44, 46, 47, 48, 49, 27diag2cl 18152 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑥)𝑁((1st𝐿)‘𝑋)))
5440ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
5513, 27, 42, 52, 35, 53, 54fucco 17872 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))))
5644adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
5746adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
5847adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑥𝐴)
59 eqid 2731 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
60 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑗𝐵)
612, 56, 57, 10, 58, 59, 42, 60diag11 18149 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
6248adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑋𝐴)
63 eqid 2731 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
642, 56, 57, 10, 62, 63, 42, 60diag11 18149 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
6561, 64opeq12d 4830 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨𝑥, 𝑋⟩)
6665oveq1d 7361 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗)) = (⟨𝑥, 𝑋· ((1st𝐹)‘𝑗)))
67 eqidd 2732 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
68 vex 3440 . . . . . . . . . . . 12 𝑚 ∈ V
6968fvconst2 7138 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7069adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7166, 67, 70oveq123d 7367 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)) = ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))
7271mpteq2dva 5182 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7351, 55, 723eqtrd 2770 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7473eqeq2d 2742 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ 𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7574reubidva 3360 . . . . 5 (((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) → (∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
76752ralbidva 3194 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7733, 41, 763bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7830, 77biadanii 821 . 2 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
796, 78bitri 275 1 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  {csn 4573  cop 4579   class class class wbr 5089  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  oppCatcoppc 17617   Func cfunc 17761   Nat cnat 17851   FuncCat cfuc 17852  Δfunccdiag 18118   oppFunc coppf 49222   UP cup 49273   Limit clmd 49743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-oppc 17618  df-func 17765  df-nat 17853  df-fuc 17854  df-xpc 18078  df-1stf 18079  df-curf 18120  df-diag 18122  df-oppf 49223  df-up 49274  df-lmd 49745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator