Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmd Structured version   Visualization version   GIF version

Theorem islmd 49647
Description: The universal property of limits of a diagram. (Contributed by Zhi Wang, 14-Nov-2025.)
Hypotheses
Ref Expression
islmd.l 𝐿 = (𝐶Δfunc𝐷)
islmd.a 𝐴 = (Base‘𝐶)
islmd.n 𝑁 = (𝐷 Nat 𝐶)
islmd.b 𝐵 = (Base‘𝐷)
islmd.h 𝐻 = (Hom ‘𝐶)
islmd.x · = (comp‘𝐶)
Assertion
Ref Expression
islmd (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Distinct variable groups:   · ,𝑗   𝐴,𝑎,𝑗,𝑚,𝑥   𝐵,𝑗   𝐶,𝑎,𝑗,𝑚,𝑥   𝐷,𝑎,𝑗,𝑚,𝑥   𝐹,𝑎,𝑗,𝑚,𝑥   𝑗,𝐻,𝑚   𝐿,𝑎,𝑗,𝑚,𝑥   𝑁,𝑎,𝑗,𝑚,𝑥   𝑅,𝑎,𝑗,𝑚,𝑥   𝑋,𝑎,𝑗,𝑚,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑚,𝑎)   · (𝑥,𝑚,𝑎)   𝐻(𝑥,𝑎)

Proof of Theorem islmd
StepHypRef Expression
1 lmdfval2 49637 . . . 4 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
2 islmd.l . . . . . 6 𝐿 = (𝐶Δfunc𝐷)
32fveq2i 6843 . . . . 5 ( oppFunc ‘𝐿) = ( oppFunc ‘(𝐶Δfunc𝐷))
43oveq1i 7379 . . . 4 (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (( oppFunc ‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
51, 4eqtr4i 2755 . . 3 ((𝐶 Limit 𝐷)‘𝐹) = (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)
65breqi 5108 . 2 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
7 id 22 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
87up1st2nd 49167 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st ‘( oppFunc ‘𝐿)), (2nd ‘( oppFunc ‘𝐿))⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
9 eqid 2729 . . . . 5 (oppCat‘𝐶) = (oppCat‘𝐶)
10 islmd.a . . . . 5 𝐴 = (Base‘𝐶)
118, 9, 10oppcuprcl4 49181 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋𝐴)
12 eqid 2729 . . . . . . . 8 (oppCat‘(𝐷 FuncCat 𝐶)) = (oppCat‘(𝐷 FuncCat 𝐶))
13 eqid 2729 . . . . . . . . 9 (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶)
1413fucbas 17905 . . . . . . . 8 (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶))
158, 12, 14oppcuprcl3 49182 . . . . . . 7 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝐹 ∈ (𝐷 Func 𝐶))
16 simpr 484 . . . . . . . . . . . . 13 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶))
1716func1st2nd 49058 . . . . . . . . . . . 12 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (1st𝐹)(𝐷 Func 𝐶)(2nd𝐹))
1817funcrcl3 49062 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat)
1917funcrcl2 49061 . . . . . . . . . . 11 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐷 ∈ Cat)
202, 18, 19, 13diagcl 18182 . . . . . . . . . 10 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
21 oppfval2 49119 . . . . . . . . . 10 (𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2220, 21syl 17 . . . . . . . . 9 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → ( oppFunc ‘𝐿) = ⟨(1st𝐿), tpos (2nd𝐿)⟩)
2322oveq1d 7384 . . . . . . . 8 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹))
2423breqd 5113 . . . . . . 7 ((𝑋𝐴𝐹 ∈ (𝐷 Func 𝐶)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2511, 15, 24syl2anc 584 . . . . . 6 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
2625ibi 267 . . . . 5 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)
27 islmd.n . . . . . 6 𝑁 = (𝐷 Nat 𝐶)
2813, 27fuchom 17906 . . . . 5 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶))
2926, 12, 28oppcuprcl5 49183 . . . 4 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
3011, 29jca 511 . . 3 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)))
3127natrcl 17895 . . . . . 6 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → (((1st𝐿)‘𝑋) ∈ (𝐷 Func 𝐶) ∧ 𝐹 ∈ (𝐷 Func 𝐶)))
3231simprd 495 . . . . 5 (𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))
3332, 24sylan2 593 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅))
34 islmd.h . . . . 5 𝐻 = (Hom ‘𝐶)
35 eqid 2729 . . . . 5 (comp‘(𝐷 FuncCat 𝐶)) = (comp‘(𝐷 FuncCat 𝐶))
3632adantl 481 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶))
3732, 20sylan2 593 . . . . . 6 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)))
3837func1st2nd 49058 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (1st𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd𝐿))
39 simpl 482 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑋𝐴)
40 simpr 484 . . . . 5 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
4110, 14, 34, 28, 35, 36, 38, 39, 40, 9, 12oppcup 49189 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(⟨(1st𝐿), tpos (2nd𝐿)⟩((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚))))
42 islmd.b . . . . . . . . . 10 𝐵 = (Base‘𝐷)
4332, 18sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐶 ∈ Cat)
4443ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐶 ∈ Cat)
4532, 19sylan2 593 . . . . . . . . . . 11 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → 𝐷 ∈ Cat)
4645ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐷 ∈ Cat)
47 simplrl 776 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑥𝐴)
4839ad2antrr 726 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑋𝐴)
49 simpr 484 . . . . . . . . . 10 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑚 ∈ (𝑥𝐻𝑋))
502, 10, 42, 34, 44, 46, 47, 48, 49diag2 18186 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → ((𝑥(2nd𝐿)𝑋)‘𝑚) = (𝐵 × {𝑚}))
5150oveq2d 7385 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})))
52 islmd.x . . . . . . . . 9 · = (comp‘𝐶)
532, 10, 42, 34, 44, 46, 47, 48, 49, 27diag2cl 18187 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝐵 × {𝑚}) ∈ (((1st𝐿)‘𝑥)𝑁((1st𝐿)‘𝑋)))
5440ad2antrr 726 . . . . . . . . 9 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹))
5513, 27, 42, 52, 35, 53, 54fucco 17907 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))))
5644adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐶 ∈ Cat)
5746adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝐷 ∈ Cat)
5847adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑥𝐴)
59 eqid 2729 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑥) = ((1st𝐿)‘𝑥)
60 simpr 484 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑗𝐵)
612, 56, 57, 10, 58, 59, 42, 60diag11 18184 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑥))‘𝑗) = 𝑥)
6248adantr 480 . . . . . . . . . . . . 13 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → 𝑋𝐴)
63 eqid 2729 . . . . . . . . . . . . 13 ((1st𝐿)‘𝑋) = ((1st𝐿)‘𝑋)
642, 56, 57, 10, 62, 63, 42, 60diag11 18184 . . . . . . . . . . . 12 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((1st ‘((1st𝐿)‘𝑋))‘𝑗) = 𝑋)
6561, 64opeq12d 4841 . . . . . . . . . . 11 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ = ⟨𝑥, 𝑋⟩)
6665oveq1d 7384 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗)) = (⟨𝑥, 𝑋· ((1st𝐹)‘𝑗)))
67 eqidd 2730 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → (𝑅𝑗) = (𝑅𝑗))
68 vex 3448 . . . . . . . . . . . 12 𝑚 ∈ V
6968fvconst2 7160 . . . . . . . . . . 11 (𝑗𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7069adantl 481 . . . . . . . . . 10 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚)
7166, 67, 70oveq123d 7390 . . . . . . . . 9 (((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗𝐵) → ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)) = ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))
7271mpteq2dva 5195 . . . . . . . 8 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑗𝐵 ↦ ((𝑅𝑗)(⟨((1st ‘((1st𝐿)‘𝑥))‘𝑗), ((1st ‘((1st𝐿)‘𝑋))‘𝑗)⟩ · ((1st𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7351, 55, 723eqtrd 2768 . . . . . . 7 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚)))
7473eqeq2d 2740 . . . . . 6 ((((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ 𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7574reubidva 3367 . . . . 5 (((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹))) → (∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
76752ralbidva 3197 . . . 4 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(⟨((1st𝐿)‘𝑥), ((1st𝐿)‘𝑋)⟩(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd𝐿)𝑋)‘𝑚)) ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7733, 41, 763bitrd 305 . . 3 ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) → (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
7830, 77biadanii 821 . 2 (𝑋(( oppFunc ‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
796, 78bitri 275 1 (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋𝐴𝑅 ∈ (((1st𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥𝐴𝑎 ∈ (((1st𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗𝐵 ↦ ((𝑅𝑗)(⟨𝑥, 𝑋· ((1st𝐹)‘𝑗))𝑚))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3349  {csn 4585  cop 4591   class class class wbr 5102  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  tpos ctpos 8181  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  oppCatcoppc 17652   Func cfunc 17796   Nat cnat 17886   FuncCat cfuc 17887  Δfunccdiag 18153   oppFunc coppf 49104   UP cup 49155   Limit clmd 49625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-hom 17220  df-cco 17221  df-cat 17609  df-cid 17610  df-oppc 17653  df-func 17800  df-nat 17888  df-fuc 17889  df-xpc 18113  df-1stf 18114  df-curf 18155  df-diag 18157  df-oppf 49105  df-up 49156  df-lmd 49627
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator