Proof of Theorem islmd
| Step | Hyp | Ref
| Expression |
| 1 | | lmdfval2 49475 |
. . . 4
⊢ ((𝐶 Limit 𝐷)‘𝐹) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 2 | | islmd.l |
. . . . . 6
⊢ 𝐿 = (𝐶Δfunc𝐷) |
| 3 | 2 | fveq2i 6878 |
. . . . 5
⊢
(oppFunc‘𝐿) =
(oppFunc‘(𝐶Δfunc𝐷)) |
| 4 | 3 | oveq1i 7413 |
. . . 4
⊢
((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 5 | 1, 4 | eqtr4i 2761 |
. . 3
⊢ ((𝐶 Limit 𝐷)‘𝐹) = ((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) |
| 6 | 5 | breqi 5125 |
. 2
⊢ (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ 𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅) |
| 7 | | id 22 |
. . . . . 6
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅) |
| 8 | 7 | up1st2nd 49067 |
. . . . 5
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝑋(〈(1st
‘(oppFunc‘𝐿)),
(2nd ‘(oppFunc‘𝐿))〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅) |
| 9 | | eqid 2735 |
. . . . 5
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
| 10 | | islmd.a |
. . . . 5
⊢ 𝐴 = (Base‘𝐶) |
| 11 | 8, 9, 10 | oppcuprcl4 49080 |
. . . 4
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝑋 ∈ 𝐴) |
| 12 | | eqid 2735 |
. . . . . . . 8
⊢
(oppCat‘(𝐷
FuncCat 𝐶)) =
(oppCat‘(𝐷 FuncCat
𝐶)) |
| 13 | | eqid 2735 |
. . . . . . . . 9
⊢ (𝐷 FuncCat 𝐶) = (𝐷 FuncCat 𝐶) |
| 14 | 13 | fucbas 17974 |
. . . . . . . 8
⊢ (𝐷 Func 𝐶) = (Base‘(𝐷 FuncCat 𝐶)) |
| 15 | 8, 12, 14 | oppcuprcl3 49081 |
. . . . . . 7
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 16 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 17 | 16 | func1st2nd 48991 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (1st ‘𝐹)(𝐷 Func 𝐶)(2nd ‘𝐹)) |
| 18 | 17 | funcrcl3 48993 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐶 ∈ Cat) |
| 19 | 17 | funcrcl2 48992 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐷 ∈ Cat) |
| 20 | 2, 18, 19, 13 | diagcl 18251 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 21 | | oppfval2 49031 |
. . . . . . . . . 10
⊢ (𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶)) → (oppFunc‘𝐿) = 〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (oppFunc‘𝐿) = 〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉) |
| 23 | 22 | oveq1d 7418 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → ((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹) = (〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)) |
| 24 | 23 | breqd 5130 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝐹 ∈ (𝐷 Func 𝐶)) → (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ 𝑋(〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)) |
| 25 | 11, 15, 24 | syl2anc 584 |
. . . . . 6
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ 𝑋(〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)) |
| 26 | 25 | ibi 267 |
. . . . 5
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝑋(〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅) |
| 27 | | islmd.n |
. . . . . 6
⊢ 𝑁 = (𝐷 Nat 𝐶) |
| 28 | 13, 27 | fuchom 17975 |
. . . . 5
⊢ 𝑁 = (Hom ‘(𝐷 FuncCat 𝐶)) |
| 29 | 26, 12, 28 | oppcuprcl5 49082 |
. . . 4
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) |
| 30 | 11, 29 | jca 511 |
. . 3
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 → (𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹))) |
| 31 | 27 | natrcl 17964 |
. . . . . 6
⊢ (𝑅 ∈ (((1st
‘𝐿)‘𝑋)𝑁𝐹) → (((1st ‘𝐿)‘𝑋) ∈ (𝐷 Func 𝐶) ∧ 𝐹 ∈ (𝐷 Func 𝐶))) |
| 32 | 31 | simprd 495 |
. . . . 5
⊢ (𝑅 ∈ (((1st
‘𝐿)‘𝑋)𝑁𝐹) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 33 | 32, 24 | sylan2 593 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ 𝑋(〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅)) |
| 34 | | islmd.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
| 35 | | eqid 2735 |
. . . . 5
⊢
(comp‘(𝐷
FuncCat 𝐶)) =
(comp‘(𝐷 FuncCat
𝐶)) |
| 36 | 32 | adantl 481 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝐹 ∈ (𝐷 Func 𝐶)) |
| 37 | 32, 20 | sylan2 593 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝐿 ∈ (𝐶 Func (𝐷 FuncCat 𝐶))) |
| 38 | 37 | func1st2nd 48991 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → (1st ‘𝐿)(𝐶 Func (𝐷 FuncCat 𝐶))(2nd ‘𝐿)) |
| 39 | | simpl 482 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝑋 ∈ 𝐴) |
| 40 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) |
| 41 | 10, 14, 34, 28, 35, 36, 38, 39, 40, 9, 12 | oppcup 49088 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → (𝑋(〈(1st ‘𝐿), tpos (2nd
‘𝐿)〉((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)))) |
| 42 | | islmd.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐷) |
| 43 | 32, 18 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝐶 ∈ Cat) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐶 ∈ Cat) |
| 45 | 32, 19 | sylan2 593 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → 𝐷 ∈ Cat) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝐷 ∈ Cat) |
| 47 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑥 ∈ 𝐴) |
| 48 | 39 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑋 ∈ 𝐴) |
| 49 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑚 ∈ (𝑥𝐻𝑋)) |
| 50 | 2, 10, 42, 34, 44, 46, 47, 48, 49 | diag2 18255 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → ((𝑥(2nd ‘𝐿)𝑋)‘𝑚) = (𝐵 × {𝑚})) |
| 51 | 50 | oveq2d 7419 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)) = (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚}))) |
| 52 | | islmd.x |
. . . . . . . . 9
⊢ · =
(comp‘𝐶) |
| 53 | 2, 10, 42, 34, 44, 46, 47, 48, 49, 27 | diag2cl 18256 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝐵 × {𝑚}) ∈ (((1st ‘𝐿)‘𝑥)𝑁((1st ‘𝐿)‘𝑋))) |
| 54 | 40 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) |
| 55 | 13, 27, 42, 52, 35, 53, 54 | fucco 17976 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)(𝐵 × {𝑚})) = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)))) |
| 56 | 44 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 57 | 46 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 𝐷 ∈ Cat) |
| 58 | 47 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
| 59 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝐿)‘𝑥) = ((1st ‘𝐿)‘𝑥) |
| 60 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 𝑗 ∈ 𝐵) |
| 61 | 2, 56, 57, 10, 58, 59, 42, 60 | diag11 18253 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → ((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗) = 𝑥) |
| 62 | 48 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 𝑋 ∈ 𝐴) |
| 63 | | eqid 2735 |
. . . . . . . . . . . . 13
⊢
((1st ‘𝐿)‘𝑋) = ((1st ‘𝐿)‘𝑋) |
| 64 | 2, 56, 57, 10, 62, 63, 42, 60 | diag11 18253 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → ((1st
‘((1st ‘𝐿)‘𝑋))‘𝑗) = 𝑋) |
| 65 | 61, 64 | opeq12d 4857 |
. . . . . . . . . . 11
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → 〈((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 = 〈𝑥, 𝑋〉) |
| 66 | 65 | oveq1d 7418 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → (〈((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘𝐹)‘𝑗)) = (〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))) |
| 67 | | eqidd 2736 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → (𝑅‘𝑗) = (𝑅‘𝑗)) |
| 68 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑚 ∈ V |
| 69 | 68 | fvconst2 7195 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ 𝐵 → ((𝐵 × {𝑚})‘𝑗) = 𝑚) |
| 70 | 69 | adantl 481 |
. . . . . . . . . 10
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → ((𝐵 × {𝑚})‘𝑗) = 𝑚) |
| 71 | 66, 67, 70 | oveq123d 7424 |
. . . . . . . . 9
⊢
(((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) ∧ 𝑗 ∈ 𝐵) → ((𝑅‘𝑗)(〈((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗)) = ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)) |
| 72 | 71 | mpteq2dva 5214 |
. . . . . . . 8
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈((1st
‘((1st ‘𝐿)‘𝑥))‘𝑗), ((1st ‘((1st
‘𝐿)‘𝑋))‘𝑗)〉 · ((1st
‘𝐹)‘𝑗))((𝐵 × {𝑚})‘𝑗))) = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚))) |
| 73 | 51, 55, 72 | 3eqtrd 2774 |
. . . . . . 7
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)) = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚))) |
| 74 | 73 | eqeq2d 2746 |
. . . . . 6
⊢ ((((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) ∧ 𝑚 ∈ (𝑥𝐻𝑋)) → (𝑎 = (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)) ↔ 𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |
| 75 | 74 | reubidva 3375 |
. . . . 5
⊢ (((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ (𝑥 ∈ 𝐴 ∧ 𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹))) → (∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)) ↔ ∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |
| 76 | 75 | 2ralbidva 3203 |
. . . 4
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → (∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑅(〈((1st ‘𝐿)‘𝑥), ((1st ‘𝐿)‘𝑋)〉(comp‘(𝐷 FuncCat 𝐶))𝐹)((𝑥(2nd ‘𝐿)𝑋)‘𝑚)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |
| 77 | 33, 41, 76 | 3bitrd 305 |
. . 3
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) → (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |
| 78 | 30, 77 | biadanii 821 |
. 2
⊢ (𝑋((oppFunc‘𝐿)((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝐹)𝑅 ↔ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |
| 79 | 6, 78 | bitri 275 |
1
⊢ (𝑋((𝐶 Limit 𝐷)‘𝐹)𝑅 ↔ ((𝑋 ∈ 𝐴 ∧ 𝑅 ∈ (((1st ‘𝐿)‘𝑋)𝑁𝐹)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑎 ∈ (((1st ‘𝐿)‘𝑥)𝑁𝐹)∃!𝑚 ∈ (𝑥𝐻𝑋)𝑎 = (𝑗 ∈ 𝐵 ↦ ((𝑅‘𝑗)(〈𝑥, 𝑋〉 · ((1st
‘𝐹)‘𝑗))𝑚)))) |