Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-m1r | Structured version Visualization version GIF version |
Description: Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers df-c 10923, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-m1r | ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cm1r 10670 | . 2 class -1R | |
2 | c1p 10662 | . . . 4 class 1P | |
3 | cpp 10663 | . . . . 5 class +P | |
4 | 2, 2, 3 | co 7307 | . . . 4 class (1P +P 1P) |
5 | 2, 4 | cop 4571 | . . 3 class 〈1P, (1P +P 1P)〉 |
6 | cer 10666 | . . 3 class ~R | |
7 | 5, 6 | cec 8527 | . 2 class [〈1P, (1P +P 1P)〉] ~R |
8 | 1, 7 | wceq 1539 | 1 wff -1R = [〈1P, (1P +P 1P)〉] ~R |
Colors of variables: wff setvar class |
This definition is referenced by: m1r 10884 m1p1sr 10894 m1m1sr 10895 mappsrpr 10910 map2psrpr 10912 |
Copyright terms: Public domain | W3C validator |