MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1m1sr Structured version   Visualization version   GIF version

Theorem m1m1sr 11162
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1m1sr (-1R ·R -1R) = 1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 11131 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21, 1oveq12i 7460 . 2 (-1R ·R -1R) = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
3 df-1r 11130 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
4 1pr 11084 . . . . 5 1PP
5 addclpr 11087 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
64, 4, 5mp2an 691 . . . . 5 (1P +P 1P) ∈ P
7 mulsrpr 11145 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (1PP ∧ (1P +P 1P) ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R )
84, 6, 4, 6, 7mp4an 692 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
9 addasspr 11091 . . . . . 6 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
10 1idpr 11098 . . . . . . . . 9 (1PP → (1P ·P 1P) = 1P)
114, 10ax-mp 5 . . . . . . . 8 (1P ·P 1P) = 1P
12 distrpr 11097 . . . . . . . . 9 ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
13 mulcompr 11092 . . . . . . . . . 10 (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P)
1413oveq1i 7458 . . . . . . . . 9 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
1512, 14eqtr4i 2771 . . . . . . . 8 ((1P +P 1P) ·P (1P +P 1P)) = ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))
1611, 15oveq12i 7460 . . . . . . 7 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) = (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))
1716oveq2i 7459 . . . . . 6 (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
189, 17eqtr4i 2771 . . . . 5 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))
19 mulclpr 11089 . . . . . . . 8 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
204, 4, 19mp2an 691 . . . . . . 7 (1P ·P 1P) ∈ P
21 mulclpr 11089 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ (1P +P 1P) ∈ P) → ((1P +P 1P) ·P (1P +P 1P)) ∈ P)
226, 6, 21mp2an 691 . . . . . . 7 ((1P +P 1P) ·P (1P +P 1P)) ∈ P
23 addclpr 11087 . . . . . . 7 (((1P ·P 1P) ∈ P ∧ ((1P +P 1P) ·P (1P +P 1P)) ∈ P) → ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P)
2420, 22, 23mp2an 691 . . . . . 6 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P
25 mulclpr 11089 . . . . . . . 8 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) ∈ P)
264, 6, 25mp2an 691 . . . . . . 7 (1P ·P (1P +P 1P)) ∈ P
27 mulclpr 11089 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) ·P 1P) ∈ P)
286, 4, 27mp2an 691 . . . . . . 7 ((1P +P 1P) ·P 1P) ∈ P
29 addclpr 11087 . . . . . . 7 (((1P ·P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) ·P 1P) ∈ P) → ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)
3026, 28, 29mp2an 691 . . . . . 6 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P
31 enreceq 11135 . . . . . 6 ((((1P +P 1P) ∈ P ∧ 1PP) ∧ (((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)) → ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))))
326, 4, 24, 30, 31mp4an 692 . . . . 5 ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))))
3318, 32mpbir 231 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
348, 33eqtr4i 2771 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R
353, 34eqtr4i 2771 . 2 1R = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
362, 35eqtr4i 2771 1 (-1R ·R -1R) = 1R
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  cop 4654  (class class class)co 7448  [cec 8761  Pcnp 10928  1Pc1p 10929   +P cpp 10930   ·P cmp 10931   ~R cer 10933  1Rc1r 10936  -1Rcm1r 10937   ·R cmr 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-ni 10941  df-pli 10942  df-mi 10943  df-lti 10944  df-plpq 10977  df-mpq 10978  df-ltpq 10979  df-enq 10980  df-nq 10981  df-erq 10982  df-plq 10983  df-mq 10984  df-1nq 10985  df-rq 10986  df-ltnq 10987  df-np 11050  df-1p 11051  df-plp 11052  df-mp 11053  df-ltp 11054  df-enr 11124  df-nr 11125  df-mr 11127  df-1r 11130  df-m1r 11131
This theorem is referenced by:  sqgt0sr  11175
  Copyright terms: Public domain W3C validator