MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1m1sr Structured version   Visualization version   GIF version

Theorem m1m1sr 11022
Description: Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1m1sr (-1R ·R -1R) = 1R

Proof of Theorem m1m1sr
StepHypRef Expression
1 df-m1r 10991 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21, 1oveq12i 7381 . 2 (-1R ·R -1R) = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
3 df-1r 10990 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
4 1pr 10944 . . . . 5 1PP
5 addclpr 10947 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
64, 4, 5mp2an 692 . . . . 5 (1P +P 1P) ∈ P
7 mulsrpr 11005 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ (1PP ∧ (1P +P 1P) ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R )
84, 6, 4, 6, 7mp4an 693 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
9 addasspr 10951 . . . . . 6 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
10 1idpr 10958 . . . . . . . . 9 (1PP → (1P ·P 1P) = 1P)
114, 10ax-mp 5 . . . . . . . 8 (1P ·P 1P) = 1P
12 distrpr 10957 . . . . . . . . 9 ((1P +P 1P) ·P (1P +P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
13 mulcompr 10952 . . . . . . . . . 10 (1P ·P (1P +P 1P)) = ((1P +P 1P) ·P 1P)
1413oveq1i 7379 . . . . . . . . 9 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) = (((1P +P 1P) ·P 1P) +P ((1P +P 1P) ·P 1P))
1512, 14eqtr4i 2755 . . . . . . . 8 ((1P +P 1P) ·P (1P +P 1P)) = ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))
1611, 15oveq12i 7381 . . . . . . 7 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) = (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)))
1716oveq2i 7380 . . . . . 6 (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))) = (1P +P (1P +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))))
189, 17eqtr4i 2755 . . . . 5 ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))
19 mulclpr 10949 . . . . . . . 8 ((1PP ∧ 1PP) → (1P ·P 1P) ∈ P)
204, 4, 19mp2an 692 . . . . . . 7 (1P ·P 1P) ∈ P
21 mulclpr 10949 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ (1P +P 1P) ∈ P) → ((1P +P 1P) ·P (1P +P 1P)) ∈ P)
226, 6, 21mp2an 692 . . . . . . 7 ((1P +P 1P) ·P (1P +P 1P)) ∈ P
23 addclpr 10947 . . . . . . 7 (((1P ·P 1P) ∈ P ∧ ((1P +P 1P) ·P (1P +P 1P)) ∈ P) → ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P)
2420, 22, 23mp2an 692 . . . . . 6 ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P
25 mulclpr 10949 . . . . . . . 8 ((1PP ∧ (1P +P 1P) ∈ P) → (1P ·P (1P +P 1P)) ∈ P)
264, 6, 25mp2an 692 . . . . . . 7 (1P ·P (1P +P 1P)) ∈ P
27 mulclpr 10949 . . . . . . . 8 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) ·P 1P) ∈ P)
286, 4, 27mp2an 692 . . . . . . 7 ((1P +P 1P) ·P 1P) ∈ P
29 addclpr 10947 . . . . . . 7 (((1P ·P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) ·P 1P) ∈ P) → ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)
3026, 28, 29mp2an 692 . . . . . 6 ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P
31 enreceq 10995 . . . . . 6 ((((1P +P 1P) ∈ P ∧ 1PP) ∧ (((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))) ∈ P ∧ ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P)) ∈ P)) → ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))))))
326, 4, 24, 30, 31mp4an 693 . . . . 5 ([⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R ↔ ((1P +P 1P) +P ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))) = (1P +P ((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P)))))
3318, 32mpbir 231 . . . 4 [⟨(1P +P 1P), 1P⟩] ~R = [⟨((1P ·P 1P) +P ((1P +P 1P) ·P (1P +P 1P))), ((1P ·P (1P +P 1P)) +P ((1P +P 1P) ·P 1P))⟩] ~R
348, 33eqtr4i 2755 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R ) = [⟨(1P +P 1P), 1P⟩] ~R
353, 34eqtr4i 2755 . 2 1R = ([⟨1P, (1P +P 1P)⟩] ~R ·R [⟨1P, (1P +P 1P)⟩] ~R )
362, 35eqtr4i 2755 1 (-1R ·R -1R) = 1R
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  cop 4591  (class class class)co 7369  [cec 8646  Pcnp 10788  1Pc1p 10789   +P cpp 10790   ·P cmp 10791   ~R cer 10793  1Rc1r 10796  -1Rcm1r 10797   ·R cmr 10799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-1p 10911  df-plp 10912  df-mp 10913  df-ltp 10914  df-enr 10984  df-nr 10985  df-mr 10987  df-1r 10990  df-m1r 10991
This theorem is referenced by:  sqgt0sr  11035
  Copyright terms: Public domain W3C validator