MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1p1sr Structured version   Visualization version   GIF version

Theorem m1p1sr 10983
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1p1sr (-1R +R 1R) = 0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 10953 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2 df-1r 10952 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
31, 2oveq12i 7358 . 2 (-1R +R 1R) = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
4 df-0r 10951 . . 3 0R = [⟨1P, 1P⟩] ~R
5 1pr 10906 . . . . 5 1PP
6 addclpr 10909 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
75, 5, 6mp2an 692 . . . . 5 (1P +P 1P) ∈ P
8 addsrpr 10966 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R )
95, 7, 7, 5, 8mp4an 693 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
10 addasspr 10913 . . . . . 6 ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P))
1110oveq2i 7357 . . . . 5 (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))
12 addclpr 10909 . . . . . . 7 ((1PP ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P)
135, 7, 12mp2an 692 . . . . . 6 (1P +P (1P +P 1P)) ∈ P
14 addclpr 10909 . . . . . . 7 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) +P 1P) ∈ P)
157, 5, 14mp2an 692 . . . . . 6 ((1P +P 1P) +P 1P) ∈ P
16 enreceq 10957 . . . . . 6 (((1PP ∧ 1PP) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))))
175, 5, 13, 15, 16mp4an 693 . . . . 5 ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))
1811, 17mpbir 231 . . . 4 [⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
199, 18eqtr4i 2757 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R
204, 19eqtr4i 2757 . 2 0R = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
213, 20eqtr4i 2757 1 (-1R +R 1R) = 0R
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  cop 4579  (class class class)co 7346  [cec 8620  Pcnp 10750  1Pc1p 10751   +P cpp 10752   ~R cer 10755  0Rc0r 10757  1Rc1r 10758  -1Rcm1r 10759   +R cplr 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-1p 10873  df-plp 10874  df-ltp 10876  df-enr 10946  df-nr 10947  df-plr 10948  df-0r 10951  df-1r 10952  df-m1r 10953
This theorem is referenced by:  pn0sr  10992  supsrlem  11002  axi2m1  11050
  Copyright terms: Public domain W3C validator