![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version |
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
m1p1sr | ⊢ (-1R +R 1R) = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 11056 | . . 3 ⊢ -1R = [⟨1P, (1P +P 1P)⟩] ~R | |
2 | df-1r 11055 | . . 3 ⊢ 1R = [⟨(1P +P 1P), 1P⟩] ~R | |
3 | 1, 2 | oveq12i 7416 | . 2 ⊢ (-1R +R 1R) = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) |
4 | df-0r 11054 | . . 3 ⊢ 0R = [⟨1P, 1P⟩] ~R | |
5 | 1pr 11009 | . . . . 5 ⊢ 1P ∈ P | |
6 | addclpr 11012 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
7 | 5, 5, 6 | mp2an 689 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
8 | addsrpr 11069 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ) | |
9 | 5, 7, 7, 5, 8 | mp4an 690 | . . . 4 ⊢ ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R |
10 | addasspr 11016 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
11 | 10 | oveq2i 7415 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
12 | addclpr 11012 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
13 | 5, 7, 12 | mp2an 689 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
14 | addclpr 11012 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
15 | 7, 5, 14 | mp2an 689 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
16 | enreceq 11060 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
17 | 5, 5, 13, 15, 16 | mp4an 690 | . . . . 5 ⊢ ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
18 | 11, 17 | mpbir 230 | . . . 4 ⊢ [⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R |
19 | 9, 18 | eqtr4i 2757 | . . 3 ⊢ ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R |
20 | 4, 19 | eqtr4i 2757 | . 2 ⊢ 0R = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) |
21 | 3, 20 | eqtr4i 2757 | 1 ⊢ (-1R +R 1R) = 0R |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 (class class class)co 7404 [cec 8700 Pcnp 10853 1Pc1p 10854 +P cpp 10855 ~R cer 10858 0Rc0r 10860 1Rc1r 10861 -1Rcm1r 10862 +R cplr 10863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-omul 8469 df-er 8702 df-ec 8704 df-qs 8708 df-ni 10866 df-pli 10867 df-mi 10868 df-lti 10869 df-plpq 10902 df-mpq 10903 df-ltpq 10904 df-enq 10905 df-nq 10906 df-erq 10907 df-plq 10908 df-mq 10909 df-1nq 10910 df-rq 10911 df-ltnq 10912 df-np 10975 df-1p 10976 df-plp 10977 df-ltp 10979 df-enr 11049 df-nr 11050 df-plr 11051 df-0r 11054 df-1r 11055 df-m1r 11056 |
This theorem is referenced by: pn0sr 11095 supsrlem 11105 axi2m1 11153 |
Copyright terms: Public domain | W3C validator |