Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version |
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
m1p1sr | ⊢ (-1R +R 1R) = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 10818 | . . 3 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
2 | df-1r 10817 | . . 3 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
3 | 1, 2 | oveq12i 7287 | . 2 ⊢ (-1R +R 1R) = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
4 | df-0r 10816 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
5 | 1pr 10771 | . . . . 5 ⊢ 1P ∈ P | |
6 | addclpr 10774 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
7 | 5, 5, 6 | mp2an 689 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
8 | addsrpr 10831 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ) | |
9 | 5, 7, 7, 5, 8 | mp4an 690 | . . . 4 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
10 | addasspr 10778 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
11 | 10 | oveq2i 7286 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
12 | addclpr 10774 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
13 | 5, 7, 12 | mp2an 689 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
14 | addclpr 10774 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
15 | 7, 5, 14 | mp2an 689 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
16 | enreceq 10822 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
17 | 5, 5, 13, 15, 16 | mp4an 690 | . . . . 5 ⊢ ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
18 | 11, 17 | mpbir 230 | . . . 4 ⊢ [〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
19 | 9, 18 | eqtr4i 2769 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈1P, 1P〉] ~R |
20 | 4, 19 | eqtr4i 2769 | . 2 ⊢ 0R = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
21 | 3, 20 | eqtr4i 2769 | 1 ⊢ (-1R +R 1R) = 0R |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 〈cop 4567 (class class class)co 7275 [cec 8496 Pcnp 10615 1Pc1p 10616 +P cpp 10617 ~R cer 10620 0Rc0r 10622 1Rc1r 10623 -1Rcm1r 10624 +R cplr 10625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-omul 8302 df-er 8498 df-ec 8500 df-qs 8504 df-ni 10628 df-pli 10629 df-mi 10630 df-lti 10631 df-plpq 10664 df-mpq 10665 df-ltpq 10666 df-enq 10667 df-nq 10668 df-erq 10669 df-plq 10670 df-mq 10671 df-1nq 10672 df-rq 10673 df-ltnq 10674 df-np 10737 df-1p 10738 df-plp 10739 df-ltp 10741 df-enr 10811 df-nr 10812 df-plr 10813 df-0r 10816 df-1r 10817 df-m1r 10818 |
This theorem is referenced by: pn0sr 10857 supsrlem 10867 axi2m1 10915 |
Copyright terms: Public domain | W3C validator |