| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version | ||
| Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| m1p1sr | ⊢ (-1R +R 1R) = 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-m1r 10953 | . . 3 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 2 | df-1r 10952 | . . 3 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 3 | 1, 2 | oveq12i 7358 | . 2 ⊢ (-1R +R 1R) = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
| 4 | df-0r 10951 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 5 | 1pr 10906 | . . . . 5 ⊢ 1P ∈ P | |
| 6 | addclpr 10909 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 8 | addsrpr 10966 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ) | |
| 9 | 5, 7, 7, 5, 8 | mp4an 693 | . . . 4 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
| 10 | addasspr 10913 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
| 11 | 10 | oveq2i 7357 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
| 12 | addclpr 10909 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
| 13 | 5, 7, 12 | mp2an 692 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
| 14 | addclpr 10909 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
| 15 | 7, 5, 14 | mp2an 692 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
| 16 | enreceq 10957 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
| 17 | 5, 5, 13, 15, 16 | mp4an 693 | . . . . 5 ⊢ ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
| 18 | 11, 17 | mpbir 231 | . . . 4 ⊢ [〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
| 19 | 9, 18 | eqtr4i 2757 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈1P, 1P〉] ~R |
| 20 | 4, 19 | eqtr4i 2757 | . 2 ⊢ 0R = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
| 21 | 3, 20 | eqtr4i 2757 | 1 ⊢ (-1R +R 1R) = 0R |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4579 (class class class)co 7346 [cec 8620 Pcnp 10750 1Pc1p 10751 +P cpp 10752 ~R cer 10755 0Rc0r 10757 1Rc1r 10758 -1Rcm1r 10759 +R cplr 10760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-1p 10873 df-plp 10874 df-ltp 10876 df-enr 10946 df-nr 10947 df-plr 10948 df-0r 10951 df-1r 10952 df-m1r 10953 |
| This theorem is referenced by: pn0sr 10992 supsrlem 11002 axi2m1 11050 |
| Copyright terms: Public domain | W3C validator |