![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version |
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
m1p1sr | ⊢ (-1R +R 1R) = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 11053 | . . 3 ⊢ -1R = [⟨1P, (1P +P 1P)⟩] ~R | |
2 | df-1r 11052 | . . 3 ⊢ 1R = [⟨(1P +P 1P), 1P⟩] ~R | |
3 | 1, 2 | oveq12i 7417 | . 2 ⊢ (-1R +R 1R) = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) |
4 | df-0r 11051 | . . 3 ⊢ 0R = [⟨1P, 1P⟩] ~R | |
5 | 1pr 11006 | . . . . 5 ⊢ 1P ∈ P | |
6 | addclpr 11009 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
7 | 5, 5, 6 | mp2an 690 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
8 | addsrpr 11066 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ) | |
9 | 5, 7, 7, 5, 8 | mp4an 691 | . . . 4 ⊢ ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R |
10 | addasspr 11013 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
11 | 10 | oveq2i 7416 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
12 | addclpr 11009 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
13 | 5, 7, 12 | mp2an 690 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
14 | addclpr 11009 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
15 | 7, 5, 14 | mp2an 690 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
16 | enreceq 11057 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
17 | 5, 5, 13, 15, 16 | mp4an 691 | . . . . 5 ⊢ ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
18 | 11, 17 | mpbir 230 | . . . 4 ⊢ [⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R |
19 | 9, 18 | eqtr4i 2763 | . . 3 ⊢ ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R |
20 | 4, 19 | eqtr4i 2763 | . 2 ⊢ 0R = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) |
21 | 3, 20 | eqtr4i 2763 | 1 ⊢ (-1R +R 1R) = 0R |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 (class class class)co 7405 [cec 8697 Pcnp 10850 1Pc1p 10851 +P cpp 10852 ~R cer 10855 0Rc0r 10857 1Rc1r 10858 -1Rcm1r 10859 +R cplr 10860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 df-np 10972 df-1p 10973 df-plp 10974 df-ltp 10976 df-enr 11046 df-nr 11047 df-plr 11048 df-0r 11051 df-1r 11052 df-m1r 11053 |
This theorem is referenced by: pn0sr 11092 supsrlem 11102 axi2m1 11150 |
Copyright terms: Public domain | W3C validator |