| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version | ||
| Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| m1p1sr | ⊢ (-1R +R 1R) = 0R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-m1r 11022 | . . 3 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 2 | df-1r 11021 | . . 3 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 3 | 1, 2 | oveq12i 7402 | . 2 ⊢ (-1R +R 1R) = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
| 4 | df-0r 11020 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
| 5 | 1pr 10975 | . . . . 5 ⊢ 1P ∈ P | |
| 6 | addclpr 10978 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
| 8 | addsrpr 11035 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ) | |
| 9 | 5, 7, 7, 5, 8 | mp4an 693 | . . . 4 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
| 10 | addasspr 10982 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
| 11 | 10 | oveq2i 7401 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
| 12 | addclpr 10978 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
| 13 | 5, 7, 12 | mp2an 692 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
| 14 | addclpr 10978 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
| 15 | 7, 5, 14 | mp2an 692 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
| 16 | enreceq 11026 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
| 17 | 5, 5, 13, 15, 16 | mp4an 693 | . . . . 5 ⊢ ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
| 18 | 11, 17 | mpbir 231 | . . . 4 ⊢ [〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
| 19 | 9, 18 | eqtr4i 2756 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈1P, 1P〉] ~R |
| 20 | 4, 19 | eqtr4i 2756 | . 2 ⊢ 0R = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
| 21 | 3, 20 | eqtr4i 2756 | 1 ⊢ (-1R +R 1R) = 0R |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4598 (class class class)co 7390 [cec 8672 Pcnp 10819 1Pc1p 10820 +P cpp 10821 ~R cer 10824 0Rc0r 10826 1Rc1r 10827 -1Rcm1r 10828 +R cplr 10829 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ec 8676 df-qs 8680 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-rq 10877 df-ltnq 10878 df-np 10941 df-1p 10942 df-plp 10943 df-ltp 10945 df-enr 11015 df-nr 11016 df-plr 11017 df-0r 11020 df-1r 11021 df-m1r 11022 |
| This theorem is referenced by: pn0sr 11061 supsrlem 11071 axi2m1 11119 |
| Copyright terms: Public domain | W3C validator |