MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1p1sr Structured version   Visualization version   GIF version

Theorem m1p1sr 11083
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1p1sr (-1R +R 1R) = 0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 11053 . . 3 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2 df-1r 11052 . . 3 1R = [⟨(1P +P 1P), 1P⟩] ~R
31, 2oveq12i 7417 . 2 (-1R +R 1R) = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
4 df-0r 11051 . . 3 0R = [⟨1P, 1P⟩] ~R
5 1pr 11006 . . . . 5 1PP
6 addclpr 11009 . . . . . 6 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
75, 5, 6mp2an 690 . . . . 5 (1P +P 1P) ∈ P
8 addsrpr 11066 . . . . 5 (((1PP ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1PP)) → ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R )
95, 7, 7, 5, 8mp4an 691 . . . 4 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
10 addasspr 11013 . . . . . 6 ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P))
1110oveq2i 7416 . . . . 5 (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))
12 addclpr 11009 . . . . . . 7 ((1PP ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P)
135, 7, 12mp2an 690 . . . . . 6 (1P +P (1P +P 1P)) ∈ P
14 addclpr 11009 . . . . . . 7 (((1P +P 1P) ∈ P ∧ 1PP) → ((1P +P 1P) +P 1P) ∈ P)
157, 5, 14mp2an 690 . . . . . 6 ((1P +P 1P) +P 1P) ∈ P
16 enreceq 11057 . . . . . 6 (((1PP ∧ 1PP) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))))
175, 5, 13, 15, 16mp4an 691 . . . . 5 ([⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))
1811, 17mpbir 230 . . . 4 [⟨1P, 1P⟩] ~R = [⟨(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)⟩] ~R
199, 18eqtr4i 2763 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R ) = [⟨1P, 1P⟩] ~R
204, 19eqtr4i 2763 . 2 0R = ([⟨1P, (1P +P 1P)⟩] ~R +R [⟨(1P +P 1P), 1P⟩] ~R )
213, 20eqtr4i 2763 1 (-1R +R 1R) = 0R
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  cop 4633  (class class class)co 7405  [cec 8697  Pcnp 10850  1Pc1p 10851   +P cpp 10852   ~R cer 10855  0Rc0r 10857  1Rc1r 10858  -1Rcm1r 10859   +R cplr 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-1p 10973  df-plp 10974  df-ltp 10976  df-enr 11046  df-nr 11047  df-plr 11048  df-0r 11051  df-1r 11052  df-m1r 11053
This theorem is referenced by:  pn0sr  11092  supsrlem  11102  axi2m1  11150
  Copyright terms: Public domain W3C validator