![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m1p1sr | Structured version Visualization version GIF version |
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
m1p1sr | ⊢ (-1R +R 1R) = 0R |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 11100 | . . 3 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
2 | df-1r 11099 | . . 3 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
3 | 1, 2 | oveq12i 7443 | . 2 ⊢ (-1R +R 1R) = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
4 | df-0r 11098 | . . 3 ⊢ 0R = [〈1P, 1P〉] ~R | |
5 | 1pr 11053 | . . . . 5 ⊢ 1P ∈ P | |
6 | addclpr 11056 | . . . . . 6 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
7 | 5, 5, 6 | mp2an 692 | . . . . 5 ⊢ (1P +P 1P) ∈ P |
8 | addsrpr 11113 | . . . . 5 ⊢ (((1P ∈ P ∧ (1P +P 1P) ∈ P) ∧ ((1P +P 1P) ∈ P ∧ 1P ∈ P)) → ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ) | |
9 | 5, 7, 7, 5, 8 | mp4an 693 | . . . 4 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
10 | addasspr 11060 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) = (1P +P (1P +P 1P)) | |
11 | 10 | oveq2i 7442 | . . . . 5 ⊢ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))) |
12 | addclpr 11056 | . . . . . . 7 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → (1P +P (1P +P 1P)) ∈ P) | |
13 | 5, 7, 12 | mp2an 692 | . . . . . 6 ⊢ (1P +P (1P +P 1P)) ∈ P |
14 | addclpr 11056 | . . . . . . 7 ⊢ (((1P +P 1P) ∈ P ∧ 1P ∈ P) → ((1P +P 1P) +P 1P) ∈ P) | |
15 | 7, 5, 14 | mp2an 692 | . . . . . 6 ⊢ ((1P +P 1P) +P 1P) ∈ P |
16 | enreceq 11104 | . . . . . 6 ⊢ (((1P ∈ P ∧ 1P ∈ P) ∧ ((1P +P (1P +P 1P)) ∈ P ∧ ((1P +P 1P) +P 1P) ∈ P)) → ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P))))) | |
17 | 5, 5, 13, 15, 16 | mp4an 693 | . . . . 5 ⊢ ([〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R ↔ (1P +P ((1P +P 1P) +P 1P)) = (1P +P (1P +P (1P +P 1P)))) |
18 | 11, 17 | mpbir 231 | . . . 4 ⊢ [〈1P, 1P〉] ~R = [〈(1P +P (1P +P 1P)), ((1P +P 1P) +P 1P)〉] ~R |
19 | 9, 18 | eqtr4i 2766 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) = [〈1P, 1P〉] ~R |
20 | 4, 19 | eqtr4i 2766 | . 2 ⊢ 0R = ([〈1P, (1P +P 1P)〉] ~R +R [〈(1P +P 1P), 1P〉] ~R ) |
21 | 3, 20 | eqtr4i 2766 | 1 ⊢ (-1R +R 1R) = 0R |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2106 〈cop 4637 (class class class)co 7431 [cec 8742 Pcnp 10897 1Pc1p 10898 +P cpp 10899 ~R cer 10902 0Rc0r 10904 1Rc1r 10905 -1Rcm1r 10906 +R cplr 10907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-ni 10910 df-pli 10911 df-mi 10912 df-lti 10913 df-plpq 10946 df-mpq 10947 df-ltpq 10948 df-enq 10949 df-nq 10950 df-erq 10951 df-plq 10952 df-mq 10953 df-1nq 10954 df-rq 10955 df-ltnq 10956 df-np 11019 df-1p 11020 df-plp 11021 df-ltp 11023 df-enr 11093 df-nr 11094 df-plr 11095 df-0r 11098 df-1r 11099 df-m1r 11100 |
This theorem is referenced by: pn0sr 11139 supsrlem 11149 axi2m1 11197 |
Copyright terms: Public domain | W3C validator |