MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   GIF version

Theorem map2psrpr 11147
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2 𝐶R
Assertion
Ref Expression
map2psrpr ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 11105 . . . . 5 <R ⊆ (R × R)
21brel 5753 . . . 4 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 495 . . 3 ((𝐶 +R -1R) <R 𝐴𝐴R)
4 map2psrpr.2 . . . . . 6 𝐶R
5 ltasr 11137 . . . . . 6 (𝐶R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
64, 5ax-mp 5 . . . . 5 (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7 pn0sr 11138 . . . . . . . . . 10 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
84, 7ax-mp 5 . . . . . . . . 9 (𝐶 +R (𝐶 ·R -1R)) = 0R
98oveq1i 7440 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴)
10 addasssr 11125 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))
11 addcomsr 11124 . . . . . . . 8 (0R +R 𝐴) = (𝐴 +R 0R)
129, 10, 113eqtr3i 2770 . . . . . . 7 (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R)
13 0idsr 11134 . . . . . . 7 (𝐴R → (𝐴 +R 0R) = 𝐴)
1412, 13eqtrid 2786 . . . . . 6 (𝐴R → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
1514breq2d 5159 . . . . 5 (𝐴R → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
166, 15bitrid 283 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
17 m1r 11119 . . . . . . . 8 -1RR
18 mulclsr 11121 . . . . . . . 8 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
194, 17, 18mp2an 692 . . . . . . 7 (𝐶 ·R -1R) ∈ R
20 addclsr 11120 . . . . . . 7 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
2119, 20mpan 690 . . . . . 6 (𝐴R → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
22 df-nr 11093 . . . . . . 7 R = ((P × P) / ~R )
23 breq2 5151 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
24 eqeq2 2746 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2524rexbidv 3176 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2623, 25imbi12d 344 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
27 df-m1r 11099 . . . . . . . . . . 11 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2827breq1i 5154 . . . . . . . . . 10 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
29 addasspr 11059 . . . . . . . . . . . 12 ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦))
3029breq2i 5155 . . . . . . . . . . 11 ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
31 ltsrpr 11114 . . . . . . . . . . 11 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦))
32 1pr 11052 . . . . . . . . . . . 12 1PP
33 ltapr 11082 . . . . . . . . . . . 12 (1PP → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
3432, 33ax-mp 5 . . . . . . . . . . 11 (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
3530, 31, 343bitr4i 303 . . . . . . . . . 10 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
3628, 35bitri 275 . . . . . . . . 9 (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
37 ltexpri 11080 . . . . . . . . 9 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
3836, 37sylbi 217 . . . . . . . 8 (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
39 enreceq 11103 . . . . . . . . . . . 12 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
4032, 39mpanl2 701 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
41 addcompr 11058 . . . . . . . . . . . 12 (𝑧 +P 𝑥) = (𝑥 +P 𝑧)
4241eqeq1i 2739 . . . . . . . . . . 11 ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦))
4340, 42bitr4di 289 . . . . . . . . . 10 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4443ancoms 458 . . . . . . . . 9 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4544rexbidva 3174 . . . . . . . 8 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
4638, 45imbitrrid 246 . . . . . . 7 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
4722, 26, 46ecoptocl 8845 . . . . . 6 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
4821, 47syl 17 . . . . 5 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
49 oveq2 7438 . . . . . . . 8 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
5049, 14sylan9eqr 2796 . . . . . . 7 ((𝐴R ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
5150ex 412 . . . . . 6 (𝐴R → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5251reximdv 3167 . . . . 5 (𝐴R → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5348, 52syld 47 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5416, 53sylbird 260 . . 3 (𝐴R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
553, 54mpcom 38 . 2 ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
564mappsrpr 11145 . . . . 5 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ 𝑥P)
57 breq2 5151 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
5856, 57bitr3id 285 . . . 4 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝑥P ↔ (𝐶 +R -1R) <R 𝐴))
5958biimpac 478 . . 3 ((𝑥P ∧ (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴) → (𝐶 +R -1R) <R 𝐴)
6059rexlimiva 3144 . 2 (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴)
6155, 60impbii 209 1 ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  cop 4636   class class class wbr 5147  (class class class)co 7430  [cec 8741  Pcnp 10896  1Pc1p 10897   +P cpp 10898  <P cltp 10900   ~R cer 10901  Rcnr 10902  0Rc0r 10903  -1Rcm1r 10905   +R cplr 10906   ·R cmr 10907   <R cltr 10908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509  df-er 8743  df-ec 8745  df-qs 8749  df-ni 10909  df-pli 10910  df-mi 10911  df-lti 10912  df-plpq 10945  df-mpq 10946  df-ltpq 10947  df-enq 10948  df-nq 10949  df-erq 10950  df-plq 10951  df-mq 10952  df-1nq 10953  df-rq 10954  df-ltnq 10955  df-np 11018  df-1p 11019  df-plp 11020  df-mp 11021  df-ltp 11022  df-enr 11092  df-nr 11093  df-plr 11094  df-mr 11095  df-ltr 11096  df-0r 11097  df-1r 11098  df-m1r 11099
This theorem is referenced by:  supsrlem  11148
  Copyright terms: Public domain W3C validator