Step | Hyp | Ref
| Expression |
1 | | ltrelsr 10824 |
. . . . 5
⊢
<R ⊆ (R ×
R) |
2 | 1 | brel 5652 |
. . . 4
⊢ ((𝐶 +R
-1R) <R 𝐴 → ((𝐶 +R
-1R) ∈ R ∧ 𝐴 ∈ R)) |
3 | 2 | simprd 496 |
. . 3
⊢ ((𝐶 +R
-1R) <R 𝐴 → 𝐴 ∈ R) |
4 | | map2psrpr.2 |
. . . . . 6
⊢ 𝐶 ∈
R |
5 | | ltasr 10856 |
. . . . . 6
⊢ (𝐶 ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)))) |
6 | 4, 5 | ax-mp 5 |
. . . . 5
⊢
(-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴))) |
7 | | pn0sr 10857 |
. . . . . . . . . 10
⊢ (𝐶 ∈ R →
(𝐶
+R (𝐶 ·R
-1R)) = 0R) |
8 | 4, 7 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐶 +R
(𝐶
·R -1R)) =
0R |
9 | 8 | oveq1i 7285 |
. . . . . . . 8
⊢ ((𝐶 +R
(𝐶
·R -1R))
+R 𝐴) = (0R
+R 𝐴) |
10 | | addasssr 10844 |
. . . . . . . 8
⊢ ((𝐶 +R
(𝐶
·R -1R))
+R 𝐴) = (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)) |
11 | | addcomsr 10843 |
. . . . . . . 8
⊢
(0R +R 𝐴) = (𝐴 +R
0R) |
12 | 9, 10, 11 | 3eqtr3i 2774 |
. . . . . . 7
⊢ (𝐶 +R
((𝐶
·R -1R)
+R 𝐴)) = (𝐴 +R
0R) |
13 | | 0idsr 10853 |
. . . . . . 7
⊢ (𝐴 ∈ R →
(𝐴
+R 0R) = 𝐴) |
14 | 12, 13 | eqtrid 2790 |
. . . . . 6
⊢ (𝐴 ∈ R →
(𝐶
+R ((𝐶 ·R
-1R) +R 𝐴)) = 𝐴) |
15 | 14 | breq2d 5086 |
. . . . 5
⊢ (𝐴 ∈ R →
((𝐶
+R -1R)
<R (𝐶 +R ((𝐶
·R -1R)
+R 𝐴)) ↔ (𝐶 +R
-1R) <R 𝐴)) |
16 | 6, 15 | bitrid 282 |
. . . 4
⊢ (𝐴 ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) ↔ (𝐶 +R
-1R) <R 𝐴)) |
17 | | m1r 10838 |
. . . . . . . 8
⊢
-1R ∈ R |
18 | | mulclsr 10840 |
. . . . . . . 8
⊢ ((𝐶 ∈ R ∧
-1R ∈ R) → (𝐶 ·R
-1R) ∈ R) |
19 | 4, 17, 18 | mp2an 689 |
. . . . . . 7
⊢ (𝐶
·R -1R) ∈
R |
20 | | addclsr 10839 |
. . . . . . 7
⊢ (((𝐶
·R -1R) ∈
R ∧ 𝐴
∈ R) → ((𝐶 ·R
-1R) +R 𝐴) ∈ R) |
21 | 19, 20 | mpan 687 |
. . . . . 6
⊢ (𝐴 ∈ R →
((𝐶
·R -1R)
+R 𝐴) ∈ R) |
22 | | df-nr 10812 |
. . . . . . 7
⊢
R = ((P × P) /
~R ) |
23 | | breq2 5078 |
. . . . . . . 8
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → (-1R
<R [〈𝑦, 𝑧〉] ~R ↔
-1R <R ((𝐶 ·R
-1R) +R 𝐴))) |
24 | | eqeq2 2750 |
. . . . . . . . 9
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
[〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
25 | 24 | rexbidv 3226 |
. . . . . . . 8
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → (∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
26 | 23, 25 | imbi12d 345 |
. . . . . . 7
⊢
([〈𝑦, 𝑧〉]
~R = ((𝐶 ·R
-1R) +R 𝐴) → ((-1R
<R [〈𝑦, 𝑧〉] ~R →
∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ) ↔
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴)))) |
27 | | df-m1r 10818 |
. . . . . . . . . . 11
⊢
-1R = [〈1P,
(1P +P
1P)〉]
~R |
28 | 27 | breq1i 5081 |
. . . . . . . . . 10
⊢
(-1R <R
[〈𝑦, 𝑧〉]
~R ↔ [〈1P,
(1P +P
1P)〉] ~R
<R [〈𝑦, 𝑧〉] ~R
) |
29 | | addasspr 10778 |
. . . . . . . . . . . 12
⊢
((1P +P
1P) +P 𝑦) = (1P
+P (1P
+P 𝑦)) |
30 | 29 | breq2i 5082 |
. . . . . . . . . . 11
⊢
((1P +P 𝑧)<P
((1P +P
1P) +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦))) |
31 | | ltsrpr 10833 |
. . . . . . . . . . 11
⊢
([〈1P, (1P
+P 1P)〉]
~R <R [〈𝑦, 𝑧〉] ~R ↔
(1P +P 𝑧)<P
((1P +P
1P) +P 𝑦)) |
32 | | 1pr 10771 |
. . . . . . . . . . . 12
⊢
1P ∈ P |
33 | | ltapr 10801 |
. . . . . . . . . . . 12
⊢
(1P ∈ P → (𝑧<P
(1P +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦)))) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑧<P
(1P +P 𝑦) ↔ (1P
+P 𝑧)<P
(1P +P
(1P +P 𝑦))) |
35 | 30, 31, 34 | 3bitr4i 303 |
. . . . . . . . . 10
⊢
([〈1P, (1P
+P 1P)〉]
~R <R [〈𝑦, 𝑧〉] ~R ↔
𝑧<P
(1P +P 𝑦)) |
36 | 28, 35 | bitri 274 |
. . . . . . . . 9
⊢
(-1R <R
[〈𝑦, 𝑧〉]
~R ↔ 𝑧<P
(1P +P 𝑦)) |
37 | | ltexpri 10799 |
. . . . . . . . 9
⊢ (𝑧<P
(1P +P 𝑦) → ∃𝑥 ∈ P (𝑧 +P 𝑥) = (1P
+P 𝑦)) |
38 | 36, 37 | sylbi 216 |
. . . . . . . 8
⊢
(-1R <R
[〈𝑦, 𝑧〉]
~R → ∃𝑥 ∈ P (𝑧 +P 𝑥) = (1P
+P 𝑦)) |
39 | | enreceq 10822 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ P ∧
1P ∈ P) ∧ (𝑦 ∈ P ∧ 𝑧 ∈ P)) →
([〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑥
+P 𝑧) = (1P
+P 𝑦))) |
40 | 32, 39 | mpanl2 698 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑥
+P 𝑧) = (1P
+P 𝑦))) |
41 | | addcompr 10777 |
. . . . . . . . . . . 12
⊢ (𝑧 +P
𝑥) = (𝑥 +P 𝑧) |
42 | 41 | eqeq1i 2743 |
. . . . . . . . . . 11
⊢ ((𝑧 +P
𝑥) =
(1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P
+P 𝑦)) |
43 | 40, 42 | bitr4di 289 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ P ∧
(𝑦 ∈ P
∧ 𝑧 ∈
P)) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑧
+P 𝑥) = (1P
+P 𝑦))) |
44 | 43 | ancoms 459 |
. . . . . . . . 9
⊢ (((𝑦 ∈ P ∧
𝑧 ∈ P)
∧ 𝑥 ∈
P) → ([〈𝑥, 1P〉]
~R = [〈𝑦, 𝑧〉] ~R ↔
(𝑧
+P 𝑥) = (1P
+P 𝑦))) |
45 | 44 | rexbidva 3225 |
. . . . . . . 8
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R ↔
∃𝑥 ∈
P (𝑧
+P 𝑥) = (1P
+P 𝑦))) |
46 | 38, 45 | syl5ibr 245 |
. . . . . . 7
⊢ ((𝑦 ∈ P ∧
𝑧 ∈ P)
→ (-1R <R
[〈𝑦, 𝑧〉]
~R → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = [〈𝑦, 𝑧〉] ~R
)) |
47 | 22, 26, 46 | ecoptocl 8596 |
. . . . . 6
⊢ (((𝐶
·R -1R)
+R 𝐴) ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
48 | 21, 47 | syl 17 |
. . . . 5
⊢ (𝐴 ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴))) |
49 | | oveq2 7283 |
. . . . . . . 8
⊢
([〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = (𝐶 +R
((𝐶
·R -1R)
+R 𝐴))) |
50 | 49, 14 | sylan9eqr 2800 |
. . . . . . 7
⊢ ((𝐴 ∈ R ∧
[〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴)) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴) |
51 | 50 | ex 413 |
. . . . . 6
⊢ (𝐴 ∈ R →
([〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
52 | 51 | reximdv 3202 |
. . . . 5
⊢ (𝐴 ∈ R →
(∃𝑥 ∈
P [〈𝑥,
1P〉] ~R = ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
53 | 48, 52 | syld 47 |
. . . 4
⊢ (𝐴 ∈ R →
(-1R <R ((𝐶
·R -1R)
+R 𝐴) → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
54 | 16, 53 | sylbird 259 |
. . 3
⊢ (𝐴 ∈ R →
((𝐶
+R -1R)
<R 𝐴 → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴)) |
55 | 3, 54 | mpcom 38 |
. 2
⊢ ((𝐶 +R
-1R) <R 𝐴 → ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴) |
56 | 4 | mappsrpr 10864 |
. . . . 5
⊢ ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑥,
1P〉] ~R ) ↔ 𝑥 ∈
P) |
57 | | breq2 5078 |
. . . . 5
⊢ ((𝐶 +R
[〈𝑥,
1P〉] ~R ) = 𝐴 → ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑥,
1P〉] ~R ) ↔ (𝐶 +R
-1R) <R 𝐴)) |
58 | 56, 57 | bitr3id 285 |
. . . 4
⊢ ((𝐶 +R
[〈𝑥,
1P〉] ~R ) = 𝐴 → (𝑥 ∈ P ↔ (𝐶 +R
-1R) <R 𝐴)) |
59 | 58 | biimpac 479 |
. . 3
⊢ ((𝑥 ∈ P ∧
(𝐶
+R [〈𝑥, 1P〉]
~R ) = 𝐴) → (𝐶 +R
-1R) <R 𝐴) |
60 | 59 | rexlimiva 3210 |
. 2
⊢
(∃𝑥 ∈
P (𝐶
+R [〈𝑥, 1P〉]
~R ) = 𝐴 → (𝐶 +R
-1R) <R 𝐴) |
61 | 55, 60 | impbii 208 |
1
⊢ ((𝐶 +R
-1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥,
1P〉] ~R ) = 𝐴) |