MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map2psrpr Structured version   Visualization version   GIF version

Theorem map2psrpr 10797
Description: Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
map2psrpr.2 𝐶R
Assertion
Ref Expression
map2psrpr ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶

Proof of Theorem map2psrpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 10755 . . . . 5 <R ⊆ (R × R)
21brel 5643 . . . 4 ((𝐶 +R -1R) <R 𝐴 → ((𝐶 +R -1R) ∈ R𝐴R))
32simprd 495 . . 3 ((𝐶 +R -1R) <R 𝐴𝐴R)
4 map2psrpr.2 . . . . . 6 𝐶R
5 ltasr 10787 . . . . . 6 (𝐶R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))))
64, 5ax-mp 5 . . . . 5 (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
7 pn0sr 10788 . . . . . . . . . 10 (𝐶R → (𝐶 +R (𝐶 ·R -1R)) = 0R)
84, 7ax-mp 5 . . . . . . . . 9 (𝐶 +R (𝐶 ·R -1R)) = 0R
98oveq1i 7265 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (0R +R 𝐴)
10 addasssr 10775 . . . . . . . 8 ((𝐶 +R (𝐶 ·R -1R)) +R 𝐴) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴))
11 addcomsr 10774 . . . . . . . 8 (0R +R 𝐴) = (𝐴 +R 0R)
129, 10, 113eqtr3i 2774 . . . . . . 7 (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = (𝐴 +R 0R)
13 0idsr 10784 . . . . . . 7 (𝐴R → (𝐴 +R 0R) = 𝐴)
1412, 13eqtrid 2790 . . . . . 6 (𝐴R → (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) = 𝐴)
1514breq2d 5082 . . . . 5 (𝐴R → ((𝐶 +R -1R) <R (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)) ↔ (𝐶 +R -1R) <R 𝐴))
166, 15syl5bb 282 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) ↔ (𝐶 +R -1R) <R 𝐴))
17 m1r 10769 . . . . . . . 8 -1RR
18 mulclsr 10771 . . . . . . . 8 ((𝐶R ∧ -1RR) → (𝐶 ·R -1R) ∈ R)
194, 17, 18mp2an 688 . . . . . . 7 (𝐶 ·R -1R) ∈ R
20 addclsr 10770 . . . . . . 7 (((𝐶 ·R -1R) ∈ R𝐴R) → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
2119, 20mpan 686 . . . . . 6 (𝐴R → ((𝐶 ·R -1R) +R 𝐴) ∈ R)
22 df-nr 10743 . . . . . . 7 R = ((P × P) / ~R )
23 breq2 5074 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ -1R <R ((𝐶 ·R -1R) +R 𝐴)))
24 eqeq2 2750 . . . . . . . . 9 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2524rexbidv 3225 . . . . . . . 8 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
2623, 25imbi12d 344 . . . . . . 7 ([⟨𝑦, 𝑧⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ((-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ) ↔ (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴))))
27 df-m1r 10749 . . . . . . . . . . 11 -1R = [⟨1P, (1P +P 1P)⟩] ~R
2827breq1i 5077 . . . . . . . . . 10 (-1R <R [⟨𝑦, 𝑧⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R )
29 addasspr 10709 . . . . . . . . . . . 12 ((1P +P 1P) +P 𝑦) = (1P +P (1P +P 𝑦))
3029breq2i 5078 . . . . . . . . . . 11 ((1P +P 𝑧)<P ((1P +P 1P) +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
31 ltsrpr 10764 . . . . . . . . . . 11 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R ↔ (1P +P 𝑧)<P ((1P +P 1P) +P 𝑦))
32 1pr 10702 . . . . . . . . . . . 12 1PP
33 ltapr 10732 . . . . . . . . . . . 12 (1PP → (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦))))
3432, 33ax-mp 5 . . . . . . . . . . 11 (𝑧<P (1P +P 𝑦) ↔ (1P +P 𝑧)<P (1P +P (1P +P 𝑦)))
3530, 31, 343bitr4i 302 . . . . . . . . . 10 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
3628, 35bitri 274 . . . . . . . . 9 (-1R <R [⟨𝑦, 𝑧⟩] ~R𝑧<P (1P +P 𝑦))
37 ltexpri 10730 . . . . . . . . 9 (𝑧<P (1P +P 𝑦) → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
3836, 37sylbi 216 . . . . . . . 8 (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦))
39 enreceq 10753 . . . . . . . . . . . 12 (((𝑥P ∧ 1PP) ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
4032, 39mpanl2 697 . . . . . . . . . . 11 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑥 +P 𝑧) = (1P +P 𝑦)))
41 addcompr 10708 . . . . . . . . . . . 12 (𝑧 +P 𝑥) = (𝑥 +P 𝑧)
4241eqeq1i 2743 . . . . . . . . . . 11 ((𝑧 +P 𝑥) = (1P +P 𝑦) ↔ (𝑥 +P 𝑧) = (1P +P 𝑦))
4340, 42bitr4di 288 . . . . . . . . . 10 ((𝑥P ∧ (𝑦P𝑧P)) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4443ancoms 458 . . . . . . . . 9 (((𝑦P𝑧P) ∧ 𝑥P) → ([⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ (𝑧 +P 𝑥) = (1P +P 𝑦)))
4544rexbidva 3224 . . . . . . . 8 ((𝑦P𝑧P) → (∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ↔ ∃𝑥P (𝑧 +P 𝑥) = (1P +P 𝑦)))
4638, 45syl5ibr 245 . . . . . . 7 ((𝑦P𝑧P) → (-1R <R [⟨𝑦, 𝑧⟩] ~R → ∃𝑥P [⟨𝑥, 1P⟩] ~R = [⟨𝑦, 𝑧⟩] ~R ))
4722, 26, 46ecoptocl 8554 . . . . . 6 (((𝐶 ·R -1R) +R 𝐴) ∈ R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
4821, 47syl 17 . . . . 5 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)))
49 oveq2 7263 . . . . . . . 8 ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = (𝐶 +R ((𝐶 ·R -1R) +R 𝐴)))
5049, 14sylan9eqr 2801 . . . . . . 7 ((𝐴R ∧ [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴)) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
5150ex 412 . . . . . 6 (𝐴R → ([⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5251reximdv 3201 . . . . 5 (𝐴R → (∃𝑥P [⟨𝑥, 1P⟩] ~R = ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5348, 52syld 47 . . . 4 (𝐴R → (-1R <R ((𝐶 ·R -1R) +R 𝐴) → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
5416, 53sylbird 259 . . 3 (𝐴R → ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴))
553, 54mpcom 38 . 2 ((𝐶 +R -1R) <R 𝐴 → ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
564mappsrpr 10795 . . . . 5 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ 𝑥P)
57 breq2 5074 . . . . 5 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → ((𝐶 +R -1R) <R (𝐶 +R [⟨𝑥, 1P⟩] ~R ) ↔ (𝐶 +R -1R) <R 𝐴))
5856, 57bitr3id 284 . . . 4 ((𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝑥P ↔ (𝐶 +R -1R) <R 𝐴))
5958biimpac 478 . . 3 ((𝑥P ∧ (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴) → (𝐶 +R -1R) <R 𝐴)
6059rexlimiva 3209 . 2 (∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴 → (𝐶 +R -1R) <R 𝐴)
6155, 60impbii 208 1 ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥P (𝐶 +R [⟨𝑥, 1P⟩] ~R ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  cop 4564   class class class wbr 5070  (class class class)co 7255  [cec 8454  Pcnp 10546  1Pc1p 10547   +P cpp 10548  <P cltp 10550   ~R cer 10551  Rcnr 10552  0Rc0r 10553  -1Rcm1r 10555   +R cplr 10556   ·R cmr 10557   <R cltr 10558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-1p 10669  df-plp 10670  df-mp 10671  df-ltp 10672  df-enr 10742  df-nr 10743  df-plr 10744  df-mr 10745  df-ltr 10746  df-0r 10747  df-1r 10748  df-m1r 10749
This theorem is referenced by:  supsrlem  10798
  Copyright terms: Public domain W3C validator