| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1r | Structured version Visualization version GIF version | ||
| Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| m1r | ⊢ -1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 10928 | . . . 4 ⊢ 1P ∈ P | |
| 2 | addclpr 10931 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 5660 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
| 5 | 1, 3, 4 | mp2an 692 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
| 6 | enrex 10980 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 8704 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-m1r 10975 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 10 | df-nr 10969 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2841 | 1 ⊢ -1R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4585 × cxp 5621 (class class class)co 7353 [cec 8630 / cqs 8631 Pcnp 10772 1Pc1p 10773 +P cpp 10774 ~R cer 10777 Rcnr 10778 -1Rcm1r 10781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-omul 8400 df-er 8632 df-ec 8634 df-qs 8638 df-ni 10785 df-pli 10786 df-mi 10787 df-lti 10788 df-plpq 10821 df-mpq 10822 df-ltpq 10823 df-enq 10824 df-nq 10825 df-erq 10826 df-plq 10827 df-mq 10828 df-1nq 10829 df-rq 10830 df-ltnq 10831 df-np 10894 df-1p 10895 df-plp 10896 df-enr 10968 df-nr 10969 df-m1r 10975 |
| This theorem is referenced by: negexsr 11015 sqgt0sr 11019 map2psrpr 11023 supsrlem 11024 mulresr 11052 axmulf 11059 axmulass 11070 axdistr 11071 axi2m1 11072 axrnegex 11075 axcnre 11077 |
| Copyright terms: Public domain | W3C validator |