MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1r Structured version   Visualization version   GIF version

Theorem m1r 10504
Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
m1r -1RR

Proof of Theorem m1r
StepHypRef Expression
1 1pr 10437 . . . 4 1PP
2 addclpr 10440 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 690 . . . 4 (1P +P 1P) ∈ P
4 opelxpi 5592 . . . 4 ((1PP ∧ (1P +P 1P) ∈ P) → ⟨1P, (1P +P 1P)⟩ ∈ (P × P))
51, 3, 4mp2an 690 . . 3 ⟨1P, (1P +P 1P)⟩ ∈ (P × P)
6 enrex 10489 . . . 4 ~R ∈ V
76ecelqsi 8353 . . 3 (⟨1P, (1P +P 1P)⟩ ∈ (P × P) → [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R ))
85, 7ax-mp 5 . 2 [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R )
9 df-m1r 10484 . 2 -1R = [⟨1P, (1P +P 1P)⟩] ~R
10 df-nr 10478 . 2 R = ((P × P) / ~R )
118, 9, 103eltr4i 2926 1 -1RR
Colors of variables: wff setvar class
Syntax hints:  wcel 2114  cop 4573   × cxp 5553  (class class class)co 7156  [cec 8287   / cqs 8288  Pcnp 10281  1Pc1p 10282   +P cpp 10283   ~R cer 10286  Rcnr 10287  -1Rcm1r 10290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-omul 8107  df-er 8289  df-ec 8291  df-qs 8295  df-ni 10294  df-pli 10295  df-mi 10296  df-lti 10297  df-plpq 10330  df-mpq 10331  df-ltpq 10332  df-enq 10333  df-nq 10334  df-erq 10335  df-plq 10336  df-mq 10337  df-1nq 10338  df-rq 10339  df-ltnq 10340  df-np 10403  df-1p 10404  df-plp 10405  df-enr 10477  df-nr 10478  df-m1r 10484
This theorem is referenced by:  negexsr  10524  sqgt0sr  10528  map2psrpr  10532  supsrlem  10533  mulresr  10561  axmulf  10568  axmulass  10579  axdistr  10580  axi2m1  10581  axrnegex  10584  axcnre  10586
  Copyright terms: Public domain W3C validator