MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1r Structured version   Visualization version   GIF version

Theorem m1r 10837
Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
m1r -1RR

Proof of Theorem m1r
StepHypRef Expression
1 1pr 10770 . . . 4 1PP
2 addclpr 10773 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 689 . . . 4 (1P +P 1P) ∈ P
4 opelxpi 5626 . . . 4 ((1PP ∧ (1P +P 1P) ∈ P) → ⟨1P, (1P +P 1P)⟩ ∈ (P × P))
51, 3, 4mp2an 689 . . 3 ⟨1P, (1P +P 1P)⟩ ∈ (P × P)
6 enrex 10822 . . . 4 ~R ∈ V
76ecelqsi 8543 . . 3 (⟨1P, (1P +P 1P)⟩ ∈ (P × P) → [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R ))
85, 7ax-mp 5 . 2 [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R )
9 df-m1r 10817 . 2 -1R = [⟨1P, (1P +P 1P)⟩] ~R
10 df-nr 10811 . 2 R = ((P × P) / ~R )
118, 9, 103eltr4i 2854 1 -1RR
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  cop 4573   × cxp 5587  (class class class)co 7269  [cec 8477   / cqs 8478  Pcnp 10614  1Pc1p 10615   +P cpp 10616   ~R cer 10619  Rcnr 10620  -1Rcm1r 10623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-oadd 8290  df-omul 8291  df-er 8479  df-ec 8481  df-qs 8485  df-ni 10627  df-pli 10628  df-mi 10629  df-lti 10630  df-plpq 10663  df-mpq 10664  df-ltpq 10665  df-enq 10666  df-nq 10667  df-erq 10668  df-plq 10669  df-mq 10670  df-1nq 10671  df-rq 10672  df-ltnq 10673  df-np 10736  df-1p 10737  df-plp 10738  df-enr 10810  df-nr 10811  df-m1r 10817
This theorem is referenced by:  negexsr  10857  sqgt0sr  10861  map2psrpr  10865  supsrlem  10866  mulresr  10894  axmulf  10901  axmulass  10912  axdistr  10913  axi2m1  10914  axrnegex  10917  axcnre  10919
  Copyright terms: Public domain W3C validator