| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1r | Structured version Visualization version GIF version | ||
| Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| m1r | ⊢ -1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 10901 | . . . 4 ⊢ 1P ∈ P | |
| 2 | addclpr 10904 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 5648 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
| 5 | 1, 3, 4 | mp2an 692 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
| 6 | enrex 10953 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 8689 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-m1r 10948 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 10 | df-nr 10942 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2844 | 1 ⊢ -1R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 〈cop 4577 × cxp 5609 (class class class)co 7341 [cec 8615 / cqs 8616 Pcnp 10745 1Pc1p 10746 +P cpp 10747 ~R cer 10750 Rcnr 10751 -1Rcm1r 10754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-ni 10758 df-pli 10759 df-mi 10760 df-lti 10761 df-plpq 10794 df-mpq 10795 df-ltpq 10796 df-enq 10797 df-nq 10798 df-erq 10799 df-plq 10800 df-mq 10801 df-1nq 10802 df-rq 10803 df-ltnq 10804 df-np 10867 df-1p 10868 df-plp 10869 df-enr 10941 df-nr 10942 df-m1r 10948 |
| This theorem is referenced by: negexsr 10988 sqgt0sr 10992 map2psrpr 10996 supsrlem 10997 mulresr 11025 axmulf 11032 axmulass 11043 axdistr 11044 axi2m1 11045 axrnegex 11048 axcnre 11050 |
| Copyright terms: Public domain | W3C validator |