MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1r Structured version   Visualization version   GIF version

Theorem m1r 10984
Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
m1r -1RR

Proof of Theorem m1r
StepHypRef Expression
1 1pr 10917 . . . 4 1PP
2 addclpr 10920 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
31, 1, 2mp2an 692 . . . 4 (1P +P 1P) ∈ P
4 opelxpi 5658 . . . 4 ((1PP ∧ (1P +P 1P) ∈ P) → ⟨1P, (1P +P 1P)⟩ ∈ (P × P))
51, 3, 4mp2an 692 . . 3 ⟨1P, (1P +P 1P)⟩ ∈ (P × P)
6 enrex 10969 . . . 4 ~R ∈ V
76ecelqsi 8703 . . 3 (⟨1P, (1P +P 1P)⟩ ∈ (P × P) → [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R ))
85, 7ax-mp 5 . 2 [⟨1P, (1P +P 1P)⟩] ~R ∈ ((P × P) / ~R )
9 df-m1r 10964 . 2 -1R = [⟨1P, (1P +P 1P)⟩] ~R
10 df-nr 10958 . 2 R = ((P × P) / ~R )
118, 9, 103eltr4i 2846 1 -1RR
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  cop 4583   × cxp 5619  (class class class)co 7355  [cec 8629   / cqs 8630  Pcnp 10761  1Pc1p 10762   +P cpp 10763   ~R cer 10766  Rcnr 10767  -1Rcm1r 10770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-ni 10774  df-pli 10775  df-mi 10776  df-lti 10777  df-plpq 10810  df-mpq 10811  df-ltpq 10812  df-enq 10813  df-nq 10814  df-erq 10815  df-plq 10816  df-mq 10817  df-1nq 10818  df-rq 10819  df-ltnq 10820  df-np 10883  df-1p 10884  df-plp 10885  df-enr 10957  df-nr 10958  df-m1r 10964
This theorem is referenced by:  negexsr  11004  sqgt0sr  11008  map2psrpr  11012  supsrlem  11013  mulresr  11041  axmulf  11048  axmulass  11059  axdistr  11060  axi2m1  11061  axrnegex  11064  axcnre  11066
  Copyright terms: Public domain W3C validator