| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m1r | Structured version Visualization version GIF version | ||
| Description: The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| m1r | ⊢ -1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 11034 | . . . 4 ⊢ 1P ∈ P | |
| 2 | addclpr 11037 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
| 3 | 1, 1, 2 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
| 4 | opelxpi 5696 | . . . 4 ⊢ ((1P ∈ P ∧ (1P +P 1P) ∈ P) → 〈1P, (1P +P 1P)〉 ∈ (P × P)) | |
| 5 | 1, 3, 4 | mp2an 692 | . . 3 ⊢ 〈1P, (1P +P 1P)〉 ∈ (P × P) |
| 6 | enrex 11086 | . . . 4 ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi 8792 | . . 3 ⊢ (〈1P, (1P +P 1P)〉 ∈ (P × P) → [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R )) |
| 8 | 5, 7 | ax-mp 5 | . 2 ⊢ [〈1P, (1P +P 1P)〉] ~R ∈ ((P × P) / ~R ) |
| 9 | df-m1r 11081 | . 2 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
| 10 | df-nr 11075 | . 2 ⊢ R = ((P × P) / ~R ) | |
| 11 | 8, 9, 10 | 3eltr4i 2848 | 1 ⊢ -1R ∈ R |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 〈cop 4612 × cxp 5657 (class class class)co 7410 [cec 8722 / cqs 8723 Pcnp 10878 1Pc1p 10879 +P cpp 10880 ~R cer 10883 Rcnr 10884 -1Rcm1r 10887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-omul 8490 df-er 8724 df-ec 8726 df-qs 8730 df-ni 10891 df-pli 10892 df-mi 10893 df-lti 10894 df-plpq 10927 df-mpq 10928 df-ltpq 10929 df-enq 10930 df-nq 10931 df-erq 10932 df-plq 10933 df-mq 10934 df-1nq 10935 df-rq 10936 df-ltnq 10937 df-np 11000 df-1p 11001 df-plp 11002 df-enr 11074 df-nr 11075 df-m1r 11081 |
| This theorem is referenced by: negexsr 11121 sqgt0sr 11125 map2psrpr 11129 supsrlem 11130 mulresr 11158 axmulf 11165 axmulass 11176 axdistr 11177 axi2m1 11178 axrnegex 11181 axcnre 11183 |
| Copyright terms: Public domain | W3C validator |