MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappsrpr Structured version   Visualization version   GIF version

Theorem mappsrpr 11037
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
mappsrpr.2 𝐶R
Assertion
Ref Expression
mappsrpr ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)

Proof of Theorem mappsrpr
StepHypRef Expression
1 df-m1r 10991 . . . 4 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21breq1i 5109 . . 3 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
3 ltsrpr 11006 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
42, 3bitri 275 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
5 mappsrpr.2 . . 3 𝐶R
6 ltasr 11029 . . 3 (𝐶R → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
75, 6ax-mp 5 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
8 ltrelpr 10927 . . . . 5 <P ⊆ (P × P)
98brel 5696 . . . 4 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → ((1P +P 1P) ∈ P ∧ ((1P +P 1P) +P 𝐴) ∈ P))
10 dmplp 10941 . . . . . 6 dom +P = (P × P)
11 0npr 10921 . . . . . 6 ¬ ∅ ∈ P
1210, 11ndmovrcl 7555 . . . . 5 (((1P +P 1P) +P 𝐴) ∈ P → ((1P +P 1P) ∈ P𝐴P))
1312simprd 495 . . . 4 (((1P +P 1P) +P 𝐴) ∈ P𝐴P)
149, 13simpl2im 503 . . 3 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → 𝐴P)
15 1pr 10944 . . . . 5 1PP
16 addclpr 10947 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
1715, 15, 16mp2an 692 . . . 4 (1P +P 1P) ∈ P
18 ltaddpr 10963 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
1917, 18mpan 690 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
2014, 19impbii 209 . 2 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ 𝐴P)
214, 7, 203bitr3i 301 1 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  cop 4591   class class class wbr 5102  (class class class)co 7369  [cec 8646  Pcnp 10788  1Pc1p 10789   +P cpp 10790  <P cltp 10792   ~R cer 10793  Rcnr 10794  -1Rcm1r 10797   +R cplr 10798   <R cltr 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-ni 10801  df-pli 10802  df-mi 10803  df-lti 10804  df-plpq 10837  df-mpq 10838  df-ltpq 10839  df-enq 10840  df-nq 10841  df-erq 10842  df-plq 10843  df-mq 10844  df-1nq 10845  df-rq 10846  df-ltnq 10847  df-np 10910  df-1p 10911  df-plp 10912  df-ltp 10914  df-enr 10984  df-nr 10985  df-plr 10986  df-ltr 10988  df-m1r 10991
This theorem is referenced by:  map2psrpr  11039  supsrlem  11040
  Copyright terms: Public domain W3C validator