MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappsrpr Structured version   Visualization version   GIF version

Theorem mappsrpr 11068
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
mappsrpr.2 𝐶R
Assertion
Ref Expression
mappsrpr ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)

Proof of Theorem mappsrpr
StepHypRef Expression
1 df-m1r 11022 . . . 4 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21breq1i 5117 . . 3 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
3 ltsrpr 11037 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
42, 3bitri 275 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
5 mappsrpr.2 . . 3 𝐶R
6 ltasr 11060 . . 3 (𝐶R → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
75, 6ax-mp 5 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
8 ltrelpr 10958 . . . . 5 <P ⊆ (P × P)
98brel 5706 . . . 4 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → ((1P +P 1P) ∈ P ∧ ((1P +P 1P) +P 𝐴) ∈ P))
10 dmplp 10972 . . . . . 6 dom +P = (P × P)
11 0npr 10952 . . . . . 6 ¬ ∅ ∈ P
1210, 11ndmovrcl 7578 . . . . 5 (((1P +P 1P) +P 𝐴) ∈ P → ((1P +P 1P) ∈ P𝐴P))
1312simprd 495 . . . 4 (((1P +P 1P) +P 𝐴) ∈ P𝐴P)
149, 13simpl2im 503 . . 3 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → 𝐴P)
15 1pr 10975 . . . . 5 1PP
16 addclpr 10978 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
1715, 15, 16mp2an 692 . . . 4 (1P +P 1P) ∈ P
18 ltaddpr 10994 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
1917, 18mpan 690 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
2014, 19impbii 209 . 2 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ 𝐴P)
214, 7, 203bitr3i 301 1 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2109  cop 4598   class class class wbr 5110  (class class class)co 7390  [cec 8672  Pcnp 10819  1Pc1p 10820   +P cpp 10821  <P cltp 10823   ~R cer 10824  Rcnr 10825  -1Rcm1r 10828   +R cplr 10829   <R cltr 10831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-ni 10832  df-pli 10833  df-mi 10834  df-lti 10835  df-plpq 10868  df-mpq 10869  df-ltpq 10870  df-enq 10871  df-nq 10872  df-erq 10873  df-plq 10874  df-mq 10875  df-1nq 10876  df-rq 10877  df-ltnq 10878  df-np 10941  df-1p 10942  df-plp 10943  df-ltp 10945  df-enr 11015  df-nr 11016  df-plr 11017  df-ltr 11019  df-m1r 11022
This theorem is referenced by:  map2psrpr  11070  supsrlem  11071
  Copyright terms: Public domain W3C validator