![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mappsrpr | Structured version Visualization version GIF version |
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mappsrpr.2 | ⊢ 𝐶 ∈ R |
Ref | Expression |
---|---|
mappsrpr | ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 11100 | . . . 4 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
2 | 1 | breq1i 5155 | . . 3 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ [〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ) |
3 | ltsrpr 11115 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
5 | mappsrpr.2 | . . 3 ⊢ 𝐶 ∈ R | |
6 | ltasr 11138 | . . 3 ⊢ (𝐶 ∈ R → (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) |
8 | ltrelpr 11036 | . . . . 5 ⊢ <P ⊆ (P × P) | |
9 | 8 | brel 5754 | . . . 4 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → ((1P +P 1P) ∈ P ∧ ((1P +P 1P) +P 𝐴) ∈ P)) |
10 | dmplp 11050 | . . . . . 6 ⊢ dom +P = (P × P) | |
11 | 0npr 11030 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
12 | 10, 11 | ndmovrcl 7619 | . . . . 5 ⊢ (((1P +P 1P) +P 𝐴) ∈ P → ((1P +P 1P) ∈ P ∧ 𝐴 ∈ P)) |
13 | 12 | simprd 495 | . . . 4 ⊢ (((1P +P 1P) +P 𝐴) ∈ P → 𝐴 ∈ P) |
14 | 9, 13 | simpl2im 503 | . . 3 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → 𝐴 ∈ P) |
15 | 1pr 11053 | . . . . 5 ⊢ 1P ∈ P | |
16 | addclpr 11056 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
17 | 15, 15, 16 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
18 | ltaddpr 11072 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 𝐴 ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) | |
19 | 17, 18 | mpan 690 | . . 3 ⊢ (𝐴 ∈ P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
20 | 14, 19 | impbii 209 | . 2 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ 𝐴 ∈ P) |
21 | 4, 7, 20 | 3bitr3i 301 | 1 ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 (class class class)co 7431 [cec 8742 Pcnp 10897 1Pc1p 10898 +P cpp 10899 <P cltp 10901 ~R cer 10902 Rcnr 10903 -1Rcm1r 10906 +R cplr 10907 <R cltr 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-omul 8510 df-er 8744 df-ec 8746 df-qs 8750 df-ni 10910 df-pli 10911 df-mi 10912 df-lti 10913 df-plpq 10946 df-mpq 10947 df-ltpq 10948 df-enq 10949 df-nq 10950 df-erq 10951 df-plq 10952 df-mq 10953 df-1nq 10954 df-rq 10955 df-ltnq 10956 df-np 11019 df-1p 11020 df-plp 11021 df-ltp 11023 df-enr 11093 df-nr 11094 df-plr 11095 df-ltr 11097 df-m1r 11100 |
This theorem is referenced by: map2psrpr 11148 supsrlem 11149 |
Copyright terms: Public domain | W3C validator |