MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mappsrpr Structured version   Visualization version   GIF version

Theorem mappsrpr 10722
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
mappsrpr.2 𝐶R
Assertion
Ref Expression
mappsrpr ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)

Proof of Theorem mappsrpr
StepHypRef Expression
1 df-m1r 10676 . . . 4 -1R = [⟨1P, (1P +P 1P)⟩] ~R
21breq1i 5060 . . 3 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ [⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R )
3 ltsrpr 10691 . . 3 ([⟨1P, (1P +P 1P)⟩] ~R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
42, 3bitri 278 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
5 mappsrpr.2 . . 3 𝐶R
6 ltasr 10714 . . 3 (𝐶R → (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R )))
75, 6ax-mp 5 . 2 (-1R <R [⟨𝐴, 1P⟩] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ))
8 ltrelpr 10612 . . . . 5 <P ⊆ (P × P)
98brel 5614 . . . 4 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → ((1P +P 1P) ∈ P ∧ ((1P +P 1P) +P 𝐴) ∈ P))
10 dmplp 10626 . . . . . 6 dom +P = (P × P)
11 0npr 10606 . . . . . 6 ¬ ∅ ∈ P
1210, 11ndmovrcl 7394 . . . . 5 (((1P +P 1P) +P 𝐴) ∈ P → ((1P +P 1P) ∈ P𝐴P))
1312simprd 499 . . . 4 (((1P +P 1P) +P 𝐴) ∈ P𝐴P)
149, 13simpl2im 507 . . 3 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → 𝐴P)
15 1pr 10629 . . . . 5 1PP
16 addclpr 10632 . . . . 5 ((1PP ∧ 1PP) → (1P +P 1P) ∈ P)
1715, 15, 16mp2an 692 . . . 4 (1P +P 1P) ∈ P
18 ltaddpr 10648 . . . 4 (((1P +P 1P) ∈ P𝐴P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
1917, 18mpan 690 . . 3 (𝐴P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴))
2014, 19impbii 212 . 2 ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ 𝐴P)
214, 7, 203bitr3i 304 1 ((𝐶 +R -1R) <R (𝐶 +R [⟨𝐴, 1P⟩] ~R ) ↔ 𝐴P)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2110  cop 4547   class class class wbr 5053  (class class class)co 7213  [cec 8389  Pcnp 10473  1Pc1p 10474   +P cpp 10475  <P cltp 10477   ~R cer 10478  Rcnr 10479  -1Rcm1r 10482   +R cplr 10483   <R cltr 10485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-omul 8207  df-er 8391  df-ec 8393  df-qs 8397  df-ni 10486  df-pli 10487  df-mi 10488  df-lti 10489  df-plpq 10522  df-mpq 10523  df-ltpq 10524  df-enq 10525  df-nq 10526  df-erq 10527  df-plq 10528  df-mq 10529  df-1nq 10530  df-rq 10531  df-ltnq 10532  df-np 10595  df-1p 10596  df-plp 10597  df-ltp 10599  df-enr 10669  df-nr 10670  df-plr 10671  df-ltr 10673  df-m1r 10676
This theorem is referenced by:  map2psrpr  10724  supsrlem  10725
  Copyright terms: Public domain W3C validator