Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mappsrpr | Structured version Visualization version GIF version |
Description: Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mappsrpr.2 | ⊢ 𝐶 ∈ R |
Ref | Expression |
---|---|
mappsrpr | ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-m1r 10676 | . . . 4 ⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | |
2 | 1 | breq1i 5060 | . . 3 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ [〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ) |
3 | ltsrpr 10691 | . . 3 ⊢ ([〈1P, (1P +P 1P)〉] ~R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) | |
4 | 2, 3 | bitri 278 | . 2 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
5 | mappsrpr.2 | . . 3 ⊢ 𝐶 ∈ R | |
6 | ltasr 10714 | . . 3 ⊢ (𝐶 ∈ R → (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (-1R <R [〈𝐴, 1P〉] ~R ↔ (𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R )) |
8 | ltrelpr 10612 | . . . . 5 ⊢ <P ⊆ (P × P) | |
9 | 8 | brel 5614 | . . . 4 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → ((1P +P 1P) ∈ P ∧ ((1P +P 1P) +P 𝐴) ∈ P)) |
10 | dmplp 10626 | . . . . . 6 ⊢ dom +P = (P × P) | |
11 | 0npr 10606 | . . . . . 6 ⊢ ¬ ∅ ∈ P | |
12 | 10, 11 | ndmovrcl 7394 | . . . . 5 ⊢ (((1P +P 1P) +P 𝐴) ∈ P → ((1P +P 1P) ∈ P ∧ 𝐴 ∈ P)) |
13 | 12 | simprd 499 | . . . 4 ⊢ (((1P +P 1P) +P 𝐴) ∈ P → 𝐴 ∈ P) |
14 | 9, 13 | simpl2im 507 | . . 3 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) → 𝐴 ∈ P) |
15 | 1pr 10629 | . . . . 5 ⊢ 1P ∈ P | |
16 | addclpr 10632 | . . . . 5 ⊢ ((1P ∈ P ∧ 1P ∈ P) → (1P +P 1P) ∈ P) | |
17 | 15, 15, 16 | mp2an 692 | . . . 4 ⊢ (1P +P 1P) ∈ P |
18 | ltaddpr 10648 | . . . 4 ⊢ (((1P +P 1P) ∈ P ∧ 𝐴 ∈ P) → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) | |
19 | 17, 18 | mpan 690 | . . 3 ⊢ (𝐴 ∈ P → (1P +P 1P)<P ((1P +P 1P) +P 𝐴)) |
20 | 14, 19 | impbii 212 | . 2 ⊢ ((1P +P 1P)<P ((1P +P 1P) +P 𝐴) ↔ 𝐴 ∈ P) |
21 | 4, 7, 20 | 3bitr3i 304 | 1 ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2110 〈cop 4547 class class class wbr 5053 (class class class)co 7213 [cec 8389 Pcnp 10473 1Pc1p 10474 +P cpp 10475 <P cltp 10477 ~R cer 10478 Rcnr 10479 -1Rcm1r 10482 +R cplr 10483 <R cltr 10485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-omul 8207 df-er 8391 df-ec 8393 df-qs 8397 df-ni 10486 df-pli 10487 df-mi 10488 df-lti 10489 df-plpq 10522 df-mpq 10523 df-ltpq 10524 df-enq 10525 df-nq 10526 df-erq 10527 df-plq 10528 df-mq 10529 df-1nq 10530 df-rq 10531 df-ltnq 10532 df-np 10595 df-1p 10596 df-plp 10597 df-ltp 10599 df-enr 10669 df-nr 10670 df-plr 10671 df-ltr 10673 df-m1r 10676 |
This theorem is referenced by: map2psrpr 10724 supsrlem 10725 |
Copyright terms: Public domain | W3C validator |