Detailed syntax breakdown of Definition df-mnd
Step | Hyp | Ref
| Expression |
1 | | cmnd 18394 |
. 2
class
Mnd |
2 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
3 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑒 |
4 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
6 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
7 | 6 | cv 1538 |
. . . . . . . . . 10
class 𝑝 |
8 | 3, 5, 7 | co 7284 |
. . . . . . . . 9
class (𝑒𝑝𝑥) |
9 | 8, 5 | wceq 1539 |
. . . . . . . 8
wff (𝑒𝑝𝑥) = 𝑥 |
10 | 5, 3, 7 | co 7284 |
. . . . . . . . 9
class (𝑥𝑝𝑒) |
11 | 10, 5 | wceq 1539 |
. . . . . . . 8
wff (𝑥𝑝𝑒) = 𝑥 |
12 | 9, 11 | wa 396 |
. . . . . . 7
wff ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
13 | | vb |
. . . . . . . 8
setvar 𝑏 |
14 | 13 | cv 1538 |
. . . . . . 7
class 𝑏 |
15 | 12, 4, 14 | wral 3065 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
16 | 15, 2, 14 | wrex 3066 |
. . . . 5
wff
∃𝑒 ∈
𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
17 | | vg |
. . . . . . 7
setvar 𝑔 |
18 | 17 | cv 1538 |
. . . . . 6
class 𝑔 |
19 | | cplusg 16971 |
. . . . . 6
class
+g |
20 | 18, 19 | cfv 6437 |
. . . . 5
class
(+g‘𝑔) |
21 | 16, 6, 20 | wsbc 3717 |
. . . 4
wff
[(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
22 | | cbs 16921 |
. . . . 5
class
Base |
23 | 18, 22 | cfv 6437 |
. . . 4
class
(Base‘𝑔) |
24 | 21, 13, 23 | wsbc 3717 |
. . 3
wff
[(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
25 | | csgrp 18383 |
. . 3
class
Smgrp |
26 | 24, 17, 25 | crab 3069 |
. 2
class {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
27 | 1, 26 | wceq 1539 |
1
wff Mnd =
{𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |