Detailed syntax breakdown of Definition df-mnd
| Step | Hyp | Ref
| Expression |
| 1 | | cmnd 18743 |
. 2
class
Mnd |
| 2 | | ve |
. . . . . . . . . . 11
setvar 𝑒 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑒 |
| 4 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 6 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑝 |
| 8 | 3, 5, 7 | co 7429 |
. . . . . . . . 9
class (𝑒𝑝𝑥) |
| 9 | 8, 5 | wceq 1540 |
. . . . . . . 8
wff (𝑒𝑝𝑥) = 𝑥 |
| 10 | 5, 3, 7 | co 7429 |
. . . . . . . . 9
class (𝑥𝑝𝑒) |
| 11 | 10, 5 | wceq 1540 |
. . . . . . . 8
wff (𝑥𝑝𝑒) = 𝑥 |
| 12 | 9, 11 | wa 395 |
. . . . . . 7
wff ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
| 13 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 14 | 13 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 15 | 12, 4, 14 | wral 3060 |
. . . . . 6
wff
∀𝑥 ∈
𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
| 16 | 15, 2, 14 | wrex 3069 |
. . . . 5
wff
∃𝑒 ∈
𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
| 17 | | vg |
. . . . . . 7
setvar 𝑔 |
| 18 | 17 | cv 1539 |
. . . . . 6
class 𝑔 |
| 19 | | cplusg 17293 |
. . . . . 6
class
+g |
| 20 | 18, 19 | cfv 6559 |
. . . . 5
class
(+g‘𝑔) |
| 21 | 16, 6, 20 | wsbc 3787 |
. . . 4
wff
[(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
| 22 | | cbs 17243 |
. . . . 5
class
Base |
| 23 | 18, 22 | cfv 6559 |
. . . 4
class
(Base‘𝑔) |
| 24 | 21, 13, 23 | wsbc 3787 |
. . 3
wff
[(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥) |
| 25 | | csgrp 18727 |
. . 3
class
Smgrp |
| 26 | 24, 17, 25 | crab 3435 |
. 2
class {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
| 27 | 1, 26 | wceq 1540 |
1
wff Mnd =
{𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |