| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrp | Structured version Visualization version GIF version | ||
| Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-mndsssmgrp | ⊢ Mnd ⊆ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mnd 18718 | . 2 ⊢ Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ Mnd ⊆ Smgrp |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∀wral 3050 ∃wrex 3059 [wsbc 3770 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 +gcplusg 17274 Smgrpcsgrp 18701 Mndcmnd 18717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-mnd 18718 |
| This theorem is referenced by: bj-mndsssmgrpel 37247 |
| Copyright terms: Public domain | W3C validator |