Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mndsssmgrp Structured version   Visualization version   GIF version

Theorem bj-mndsssmgrp 35368
Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-mndsssmgrp Mnd ⊆ Smgrp

Proof of Theorem bj-mndsssmgrp
Dummy variables 𝑔 𝑏 𝑝 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnd 18301 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
21ssrab3 4011 1 Mnd ⊆ Smgrp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wral 3063  wrex 3064  [wsbc 3711  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Smgrpcsgrp 18289  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-mnd 18301
This theorem is referenced by:  bj-mndsssmgrpel  35369
  Copyright terms: Public domain W3C validator