![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrp | Structured version Visualization version GIF version |
Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-mndsssmgrp | ⊢ Mnd ⊆ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnd 18767 | . 2 ⊢ Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | |
2 | 1 | ssrab3 4105 | 1 ⊢ Mnd ⊆ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∀wral 3067 ∃wrex 3076 [wsbc 3804 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 +gcplusg 17305 Smgrpcsgrp 18750 Mndcmnd 18766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-mnd 18767 |
This theorem is referenced by: bj-mndsssmgrpel 37229 |
Copyright terms: Public domain | W3C validator |