![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrp | Structured version Visualization version GIF version |
Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-mndsssmgrp | ⊢ Mnd ⊆ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnd 18666 | . 2 ⊢ Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | |
2 | 1 | ssrab3 4080 | 1 ⊢ Mnd ⊆ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∀wral 3060 ∃wrex 3069 [wsbc 3777 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 Smgrpcsgrp 18649 Mndcmnd 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-in 3955 df-ss 3965 df-mnd 18666 |
This theorem is referenced by: bj-mndsssmgrpel 36619 |
Copyright terms: Public domain | W3C validator |