Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mndsssmgrp Structured version   Visualization version   GIF version

Theorem bj-mndsssmgrp 37325
Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-mndsssmgrp Mnd ⊆ Smgrp

Proof of Theorem bj-mndsssmgrp
Dummy variables 𝑔 𝑏 𝑝 𝑒 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mnd 18653 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
21ssrab3 4033 1 Mnd ⊆ Smgrp
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wral 3049  wrex 3058  [wsbc 3738  wss 3899  cfv 6489  (class class class)co 7355  Basecbs 17130  +gcplusg 17171  Smgrpcsgrp 18636  Mndcmnd 18652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-ss 3916  df-mnd 18653
This theorem is referenced by:  bj-mndsssmgrpel  37326
  Copyright terms: Public domain W3C validator