Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mndsssmgrp | Structured version Visualization version GIF version |
Description: Monoids are semigroups. (Contributed by BJ, 11-Apr-2024.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-mndsssmgrp | ⊢ Mnd ⊆ Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mnd 18301 | . 2 ⊢ Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} | |
2 | 1 | ssrab3 4011 | 1 ⊢ Mnd ⊆ Smgrp |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∀wral 3063 ∃wrex 3064 [wsbc 3711 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Smgrpcsgrp 18289 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-mnd 18301 |
This theorem is referenced by: bj-mndsssmgrpel 35369 |
Copyright terms: Public domain | W3C validator |