MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismnddef Structured version   Visualization version   GIF version

Theorem ismnddef 18387
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b 𝐵 = (Base‘𝐺)
ismnddef.p + = (+g𝐺)
Assertion
Ref Expression
ismnddef (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑒   + ,𝑎,𝑒
Allowed substitution hints:   𝐺(𝑒,𝑎)

Proof of Theorem ismnddef
Dummy variables 𝑏 𝑔 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6787 . . 3 (Base‘𝑔) ∈ V
2 fvex 6787 . . 3 (+g𝑔) ∈ V
3 fveq2 6774 . . . . . . 7 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
4 ismnddef.b . . . . . . 7 𝐵 = (Base‘𝐺)
53, 4eqtr4di 2796 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
65eqeq2d 2749 . . . . 5 (𝑔 = 𝐺 → (𝑏 = (Base‘𝑔) ↔ 𝑏 = 𝐵))
7 fveq2 6774 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 ismnddef.p . . . . . . 7 + = (+g𝐺)
97, 8eqtr4di 2796 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109eqeq2d 2749 . . . . 5 (𝑔 = 𝐺 → (𝑝 = (+g𝑔) ↔ 𝑝 = + ))
116, 10anbi12d 631 . . . 4 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) ↔ (𝑏 = 𝐵𝑝 = + )))
12 simpl 483 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → 𝑏 = 𝐵)
13 oveq 7281 . . . . . . . . 9 (𝑝 = + → (𝑒𝑝𝑎) = (𝑒 + 𝑎))
1413eqeq1d 2740 . . . . . . . 8 (𝑝 = + → ((𝑒𝑝𝑎) = 𝑎 ↔ (𝑒 + 𝑎) = 𝑎))
15 oveq 7281 . . . . . . . . 9 (𝑝 = + → (𝑎𝑝𝑒) = (𝑎 + 𝑒))
1615eqeq1d 2740 . . . . . . . 8 (𝑝 = + → ((𝑎𝑝𝑒) = 𝑎 ↔ (𝑎 + 𝑒) = 𝑎))
1714, 16anbi12d 631 . . . . . . 7 (𝑝 = + → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
1817adantl 482 . . . . . 6 ((𝑏 = 𝐵𝑝 = + ) → (((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
1912, 18raleqbidv 3336 . . . . 5 ((𝑏 = 𝐵𝑝 = + ) → (∀𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∀𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2012, 19rexeqbidv 3337 . . . 4 ((𝑏 = 𝐵𝑝 = + ) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
2111, 20syl6bi 252 . . 3 (𝑔 = 𝐺 → ((𝑏 = (Base‘𝑔) ∧ 𝑝 = (+g𝑔)) → (∃𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))))
221, 2, 21sbc2iedv 3801 . 2 (𝑔 = 𝐺 → ([(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎) ↔ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
23 df-mnd 18386 . 2 Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑎𝑏 ((𝑒𝑝𝑎) = 𝑎 ∧ (𝑎𝑝𝑒) = 𝑎)}
2422, 23elrab2 3627 1 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  [wsbc 3716  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Smgrpcsgrp 18374  Mndcmnd 18385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-mnd 18386
This theorem is referenced by:  ismnd  18388  isnmnd  18389  sgrpidmnd  18390  mndsgrp  18391  mnd1  18426  efmndmnd  18528  smndex1mnd  18549  isringrng  45439  2zrngamnd  45499
  Copyright terms: Public domain W3C validator