| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18615 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18517 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18512 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-mgm 18514 df-sgrp 18593 df-mnd 18609 |
| This theorem is referenced by: mnd4g 18622 mndpropd 18633 issubmnd 18635 prdsplusgcl 18642 imasmnd 18649 xpsmnd0 18652 idmhm 18669 mhmf1o 18670 mndvcl 18671 mhmvlin 18675 issubmd 18680 0mhm 18693 mhmco 18697 mhmeql 18700 submacs 18701 mndind 18702 prdspjmhm 18703 pwsdiagmhm 18705 pwsco1mhm 18706 pwsco2mhm 18707 gsumwmhm 18719 grpcl 18820 mhmmnd 18943 mulgnn0cl 18969 cntzsubm 19217 oppgmnd 19233 lsmssv 19522 frgp0 19639 frgpadd 19642 mulgnn0di 19704 mulgmhm 19706 gsumval3eu 19783 gsumval3 19786 gsumzcl2 19789 gsumzaddlem 19800 gsumzmhm 19816 gsummptfzcl 19848 omndadd2d 20009 omndadd2rd 20010 srgcl 20078 srgacl 20090 srgbinomlem 20115 srgbinom 20116 ringcl 20135 ringpropd 20173 c0mhm 20345 mat2pmatghm 22615 pm2mpghm 22701 cpmadugsumlemF 22761 tsmsadd 24032 mndcld 32976 cmn246135 32987 cmn145236 32988 slmdacl 33151 slmdvacl 33154 gsumncl 34508 primrootsunit1 42070 aks6d1c1 42089 aks6d1c5lem0 42108 aks6d1c5lem3 42110 aks6d1c5lem2 42111 aks6d1c5 42112 aks6d1c6lem1 42143 ofaddmndmap 48327 lincsum 48414 mndtccatid 49572 |
| Copyright terms: Public domain | W3C validator |