| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18644 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18546 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Mgmcmgm 18541 Mndcmnd 18637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-mgm 18543 df-sgrp 18622 df-mnd 18638 |
| This theorem is referenced by: mnd4g 18651 mndpropd 18662 issubmnd 18664 prdsplusgcl 18671 imasmnd 18678 xpsmnd0 18681 idmhm 18698 mhmf1o 18699 mndvcl 18700 mhmvlin 18704 issubmd 18709 0mhm 18722 mhmco 18726 mhmeql 18729 submacs 18730 mndind 18731 prdspjmhm 18732 pwsdiagmhm 18734 pwsco1mhm 18735 pwsco2mhm 18736 gsumwmhm 18748 grpcl 18849 mhmmnd 18972 mulgnn0cl 18998 cntzsubm 19246 oppgmnd 19262 lsmssv 19549 frgp0 19666 frgpadd 19669 mulgnn0di 19731 mulgmhm 19733 gsumval3eu 19810 gsumval3 19813 gsumzcl2 19816 gsumzaddlem 19827 gsumzmhm 19843 gsummptfzcl 19875 srgcl 20078 srgacl 20090 srgbinomlem 20115 srgbinom 20116 ringcl 20135 ringpropd 20173 c0mhm 20345 mat2pmatghm 22593 pm2mpghm 22679 cpmadugsumlemF 22739 tsmsadd 24010 mndcld 32936 cmn246135 32947 cmn145236 32948 omndadd2d 32995 omndadd2rd 32996 slmdacl 33135 slmdvacl 33138 gsumncl 34504 primrootsunit1 42058 aks6d1c1 42077 aks6d1c5lem0 42096 aks6d1c5lem3 42098 aks6d1c5lem2 42099 aks6d1c5 42100 aks6d1c6lem1 42131 ofaddmndmap 48304 lincsum 48391 mndtccatid 49549 |
| Copyright terms: Public domain | W3C validator |