| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18650 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18552 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Mgmcmgm 18547 Mndcmnd 18643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-mgm 18549 df-sgrp 18628 df-mnd 18644 |
| This theorem is referenced by: mnd4g 18657 mndpropd 18668 issubmnd 18670 prdsplusgcl 18677 imasmnd 18684 xpsmnd0 18687 idmhm 18704 mhmf1o 18705 mndvcl 18706 mhmvlin 18710 issubmd 18715 0mhm 18728 mhmco 18732 mhmeql 18735 submacs 18736 mndind 18737 prdspjmhm 18738 pwsdiagmhm 18740 pwsco1mhm 18741 pwsco2mhm 18742 gsumwmhm 18754 grpcl 18855 mhmmnd 18978 mulgnn0cl 19004 cntzsubm 19252 oppgmnd 19268 lsmssv 19557 frgp0 19674 frgpadd 19677 mulgnn0di 19739 mulgmhm 19741 gsumval3eu 19818 gsumval3 19821 gsumzcl2 19824 gsumzaddlem 19835 gsumzmhm 19851 gsummptfzcl 19883 omndadd2d 20044 omndadd2rd 20045 srgcl 20113 srgacl 20125 srgbinomlem 20150 srgbinom 20151 ringcl 20170 ringpropd 20208 c0mhm 20380 mat2pmatghm 22650 pm2mpghm 22736 cpmadugsumlemF 22796 tsmsadd 24067 mndcld 33006 cmn246135 33017 cmn145236 33018 slmdacl 33178 slmdvacl 33181 gsumncl 34524 primrootsunit1 42078 aks6d1c1 42097 aks6d1c5lem0 42116 aks6d1c5lem3 42118 aks6d1c5lem2 42119 aks6d1c5 42120 aks6d1c6lem1 42151 ofaddmndmap 48324 lincsum 48411 mndtccatid 49569 |
| Copyright terms: Public domain | W3C validator |