| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18649 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18551 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Mgmcmgm 18546 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: mnd4g 18656 mndpropd 18667 issubmnd 18669 prdsplusgcl 18676 imasmnd 18683 xpsmnd0 18686 idmhm 18703 mhmf1o 18704 mndvcl 18705 mhmvlin 18709 issubmd 18714 0mhm 18727 mhmco 18731 mhmeql 18734 submacs 18735 mndind 18736 prdspjmhm 18737 pwsdiagmhm 18739 pwsco1mhm 18740 pwsco2mhm 18741 gsumwmhm 18753 grpcl 18854 mhmmnd 18977 mulgnn0cl 19003 cntzsubm 19250 oppgmnd 19266 lsmssv 19555 frgp0 19672 frgpadd 19675 mulgnn0di 19737 mulgmhm 19739 gsumval3eu 19816 gsumval3 19819 gsumzcl2 19822 gsumzaddlem 19833 gsumzmhm 19849 gsummptfzcl 19881 omndadd2d 20042 omndadd2rd 20043 srgcl 20111 srgacl 20123 srgbinomlem 20148 srgbinom 20149 ringcl 20168 ringpropd 20206 c0mhm 20378 mat2pmatghm 22645 pm2mpghm 22731 cpmadugsumlemF 22791 tsmsadd 24062 mndcld 33003 cmn246135 33014 cmn145236 33015 slmdacl 33178 slmdvacl 33181 gsumncl 34553 primrootsunit1 42138 aks6d1c1 42157 aks6d1c5lem0 42176 aks6d1c5lem3 42178 aks6d1c5lem2 42179 aks6d1c5 42180 aks6d1c6lem1 42211 ofaddmndmap 48382 lincsum 48469 mndtccatid 49627 |
| Copyright terms: Public domain | W3C validator |