Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18307 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18244 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1161 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mgmcmgm 18239 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: mnd4g 18314 mndpropd 18325 issubmnd 18327 prdsplusgcl 18331 imasmnd 18338 idmhm 18354 mhmf1o 18355 issubmd 18360 0mhm 18373 mhmco 18377 mhmeql 18379 submacs 18380 mndind 18381 prdspjmhm 18382 pwsdiagmhm 18384 pwsco1mhm 18385 pwsco2mhm 18386 gsumccatOLD 18394 gsumwmhm 18399 grpcl 18500 mhmmnd 18612 mulgnn0cl 18635 cntzsubm 18857 oppgmnd 18876 lsmssv 19163 frgp0 19281 frgpadd 19284 mulgnn0di 19342 mulgmhm 19344 gsumval3eu 19420 gsumval3 19423 gsumzcl2 19426 gsumzaddlem 19437 gsumzmhm 19453 gsummptfzcl 19485 srgcl 19663 srgacl 19675 srgbinomlem 19695 srgbinom 19696 ringcl 19715 ringpropd 19736 mndvcl 21450 mhmvlin 21456 mat2pmatghm 21787 pm2mpghm 21873 cpmadugsumlemF 21933 tsmsadd 23206 omndadd2d 31236 omndadd2rd 31237 slmdacl 31364 slmdvacl 31367 gsumncl 32419 c0mhm 45356 ofaddmndmap 45567 lincsum 45658 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |