![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18766 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18668 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 Mgmcmgm 18663 Mndcmnd 18759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-mgm 18665 df-sgrp 18744 df-mnd 18760 |
This theorem is referenced by: mnd4g 18773 mndpropd 18784 issubmnd 18786 prdsplusgcl 18793 imasmnd 18800 xpsmnd0 18803 idmhm 18820 mhmf1o 18821 mndvcl 18822 mhmvlin 18826 issubmd 18831 0mhm 18844 mhmco 18848 mhmeql 18851 submacs 18852 mndind 18853 prdspjmhm 18854 pwsdiagmhm 18856 pwsco1mhm 18857 pwsco2mhm 18858 gsumwmhm 18870 grpcl 18971 mhmmnd 19094 mulgnn0cl 19120 cntzsubm 19368 oppgmnd 19387 lsmssv 19675 frgp0 19792 frgpadd 19795 mulgnn0di 19857 mulgmhm 19859 gsumval3eu 19936 gsumval3 19939 gsumzcl2 19942 gsumzaddlem 19953 gsumzmhm 19969 gsummptfzcl 20001 srgcl 20210 srgacl 20222 srgbinomlem 20247 srgbinom 20248 ringcl 20267 ringpropd 20301 c0mhm 20476 mat2pmatghm 22751 pm2mpghm 22837 cpmadugsumlemF 22897 tsmsadd 24170 mndcld 33009 cmn246135 33020 cmn145236 33021 omndadd2d 33067 omndadd2rd 33068 slmdacl 33197 slmdvacl 33200 gsumncl 34533 primrootsunit1 42078 aks6d1c1 42097 aks6d1c5lem0 42116 aks6d1c5lem3 42118 aks6d1c5lem2 42119 aks6d1c5 42120 aks6d1c6lem1 42151 ofaddmndmap 48187 lincsum 48274 mndtccatid 48895 |
Copyright terms: Public domain | W3C validator |