| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18675 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18577 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: mnd4g 18682 mndpropd 18693 issubmnd 18695 prdsplusgcl 18702 imasmnd 18709 xpsmnd0 18712 idmhm 18729 mhmf1o 18730 mndvcl 18731 mhmvlin 18735 issubmd 18740 0mhm 18753 mhmco 18757 mhmeql 18760 submacs 18761 mndind 18762 prdspjmhm 18763 pwsdiagmhm 18765 pwsco1mhm 18766 pwsco2mhm 18767 gsumwmhm 18779 grpcl 18880 mhmmnd 19003 mulgnn0cl 19029 cntzsubm 19277 oppgmnd 19293 lsmssv 19580 frgp0 19697 frgpadd 19700 mulgnn0di 19762 mulgmhm 19764 gsumval3eu 19841 gsumval3 19844 gsumzcl2 19847 gsumzaddlem 19858 gsumzmhm 19874 gsummptfzcl 19906 srgcl 20109 srgacl 20121 srgbinomlem 20146 srgbinom 20147 ringcl 20166 ringpropd 20204 c0mhm 20376 mat2pmatghm 22624 pm2mpghm 22710 cpmadugsumlemF 22770 tsmsadd 24041 mndcld 32970 cmn246135 32981 cmn145236 32982 omndadd2d 33029 omndadd2rd 33030 slmdacl 33169 slmdvacl 33172 gsumncl 34538 primrootsunit1 42092 aks6d1c1 42111 aks6d1c5lem0 42130 aks6d1c5lem3 42132 aks6d1c5lem2 42133 aks6d1c5 42134 aks6d1c6lem1 42165 ofaddmndmap 48335 lincsum 48422 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |