Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18392 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18329 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-mgm 18326 df-sgrp 18375 df-mnd 18386 |
This theorem is referenced by: mnd4g 18399 mndpropd 18410 issubmnd 18412 prdsplusgcl 18416 imasmnd 18423 idmhm 18439 mhmf1o 18440 issubmd 18445 0mhm 18458 mhmco 18462 mhmeql 18464 submacs 18465 mndind 18466 prdspjmhm 18467 pwsdiagmhm 18469 pwsco1mhm 18470 pwsco2mhm 18471 gsumccatOLD 18479 gsumwmhm 18484 grpcl 18585 mhmmnd 18697 mulgnn0cl 18720 cntzsubm 18942 oppgmnd 18961 lsmssv 19248 frgp0 19366 frgpadd 19369 mulgnn0di 19427 mulgmhm 19429 gsumval3eu 19505 gsumval3 19508 gsumzcl2 19511 gsumzaddlem 19522 gsumzmhm 19538 gsummptfzcl 19570 srgcl 19748 srgacl 19760 srgbinomlem 19780 srgbinom 19781 ringcl 19800 ringpropd 19821 mndvcl 21540 mhmvlin 21546 mat2pmatghm 21879 pm2mpghm 21965 cpmadugsumlemF 22025 tsmsadd 23298 omndadd2d 31334 omndadd2rd 31335 slmdacl 31462 slmdvacl 31465 gsumncl 32519 c0mhm 45468 ofaddmndmap 45679 lincsum 45770 mndtccatid 46374 |
Copyright terms: Public domain | W3C validator |