![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18632 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18564 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1164 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 Mgmcmgm 18559 Mndcmnd 18625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-mgm 18561 df-sgrp 18610 df-mnd 18626 |
This theorem is referenced by: mnd4g 18639 mndpropd 18650 issubmnd 18652 prdsplusgcl 18656 imasmnd 18663 xpsmnd0 18666 idmhm 18681 mhmf1o 18682 issubmd 18687 0mhm 18700 mhmco 18704 mhmeql 18707 submacs 18708 mndind 18709 prdspjmhm 18710 pwsdiagmhm 18712 pwsco1mhm 18713 pwsco2mhm 18714 gsumwmhm 18726 grpcl 18827 mhmmnd 18947 mulgnn0cl 18970 cntzsubm 19202 oppgmnd 19221 lsmssv 19511 frgp0 19628 frgpadd 19631 mulgnn0di 19693 mulgmhm 19695 gsumval3eu 19772 gsumval3 19775 gsumzcl2 19778 gsumzaddlem 19789 gsumzmhm 19805 gsummptfzcl 19837 srgcl 20016 srgacl 20028 srgbinomlem 20053 srgbinom 20054 ringcl 20073 ringpropd 20102 mndvcl 21893 mhmvlin 21899 mat2pmatghm 22232 pm2mpghm 22318 cpmadugsumlemF 22378 tsmsadd 23651 omndadd2d 32226 omndadd2rd 32227 slmdacl 32354 slmdvacl 32357 gsumncl 33551 c0mhm 46709 ofaddmndmap 47019 lincsum 47110 mndtccatid 47713 |
Copyright terms: Public domain | W3C validator |