![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
Ref | Expression |
---|---|
mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndmgm 18779 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mgmcl 18681 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mgmcmgm 18676 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mnd4g 18786 mndpropd 18797 issubmnd 18799 prdsplusgcl 18803 imasmnd 18810 xpsmnd0 18813 idmhm 18830 mhmf1o 18831 mndvcl 18832 mhmvlin 18836 issubmd 18841 0mhm 18854 mhmco 18858 mhmeql 18861 submacs 18862 mndind 18863 prdspjmhm 18864 pwsdiagmhm 18866 pwsco1mhm 18867 pwsco2mhm 18868 gsumwmhm 18880 grpcl 18981 mhmmnd 19104 mulgnn0cl 19130 cntzsubm 19378 oppgmnd 19397 lsmssv 19685 frgp0 19802 frgpadd 19805 mulgnn0di 19867 mulgmhm 19869 gsumval3eu 19946 gsumval3 19949 gsumzcl2 19952 gsumzaddlem 19963 gsumzmhm 19979 gsummptfzcl 20011 srgcl 20220 srgacl 20232 srgbinomlem 20257 srgbinom 20258 ringcl 20277 ringpropd 20311 c0mhm 20486 mat2pmatghm 22757 pm2mpghm 22843 cpmadugsumlemF 22903 tsmsadd 24176 mndcld 33008 cmn246135 33019 cmn145236 33020 omndadd2d 33058 omndadd2rd 33059 slmdacl 33188 slmdvacl 33191 gsumncl 34517 primrootsunit1 42054 aks6d1c1 42073 aks6d1c5lem0 42092 aks6d1c5lem3 42094 aks6d1c5lem2 42095 aks6d1c5 42096 aks6d1c6lem1 42127 ofaddmndmap 48068 lincsum 48158 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |