| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18717 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18619 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 Mgmcmgm 18614 Mndcmnd 18710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-mgm 18616 df-sgrp 18695 df-mnd 18711 |
| This theorem is referenced by: mnd4g 18724 mndpropd 18735 issubmnd 18737 prdsplusgcl 18744 imasmnd 18751 xpsmnd0 18754 idmhm 18771 mhmf1o 18772 mndvcl 18773 mhmvlin 18777 issubmd 18782 0mhm 18795 mhmco 18799 mhmeql 18802 submacs 18803 mndind 18804 prdspjmhm 18805 pwsdiagmhm 18807 pwsco1mhm 18808 pwsco2mhm 18809 gsumwmhm 18821 grpcl 18922 mhmmnd 19045 mulgnn0cl 19071 cntzsubm 19319 oppgmnd 19335 lsmssv 19622 frgp0 19739 frgpadd 19742 mulgnn0di 19804 mulgmhm 19806 gsumval3eu 19883 gsumval3 19886 gsumzcl2 19889 gsumzaddlem 19900 gsumzmhm 19916 gsummptfzcl 19948 srgcl 20151 srgacl 20163 srgbinomlem 20188 srgbinom 20189 ringcl 20208 ringpropd 20246 c0mhm 20418 mat2pmatghm 22666 pm2mpghm 22752 cpmadugsumlemF 22812 tsmsadd 24083 mndcld 32963 cmn246135 32974 cmn145236 32975 omndadd2d 33022 omndadd2rd 33023 slmdacl 33152 slmdvacl 33155 gsumncl 34518 primrootsunit1 42056 aks6d1c1 42075 aks6d1c5lem0 42094 aks6d1c5lem3 42096 aks6d1c5lem2 42097 aks6d1c5 42098 aks6d1c6lem1 42129 ofaddmndmap 48266 lincsum 48353 mndtccatid 49412 |
| Copyright terms: Public domain | W3C validator |