| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndcl | Structured version Visualization version GIF version | ||
| Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndcl | ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndmgm 18668 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Mgm) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | mgmcl 18570 | . 2 ⊢ ((𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| 5 | 1, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mgmcmgm 18565 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: mnd4g 18675 mndpropd 18686 issubmnd 18688 prdsplusgcl 18695 imasmnd 18702 xpsmnd0 18705 idmhm 18722 mhmf1o 18723 mndvcl 18724 mhmvlin 18728 issubmd 18733 0mhm 18746 mhmco 18750 mhmeql 18753 submacs 18754 mndind 18755 prdspjmhm 18756 pwsdiagmhm 18758 pwsco1mhm 18759 pwsco2mhm 18760 gsumwmhm 18772 grpcl 18873 mhmmnd 18996 mulgnn0cl 19022 cntzsubm 19270 oppgmnd 19286 lsmssv 19573 frgp0 19690 frgpadd 19693 mulgnn0di 19755 mulgmhm 19757 gsumval3eu 19834 gsumval3 19837 gsumzcl2 19840 gsumzaddlem 19851 gsumzmhm 19867 gsummptfzcl 19899 srgcl 20102 srgacl 20114 srgbinomlem 20139 srgbinom 20140 ringcl 20159 ringpropd 20197 c0mhm 20369 mat2pmatghm 22617 pm2mpghm 22703 cpmadugsumlemF 22763 tsmsadd 24034 mndcld 32963 cmn246135 32974 cmn145236 32975 omndadd2d 33022 omndadd2rd 33023 slmdacl 33162 slmdvacl 33165 gsumncl 34531 primrootsunit1 42085 aks6d1c1 42104 aks6d1c5lem0 42123 aks6d1c5lem3 42125 aks6d1c5lem2 42126 aks6d1c5 42127 aks6d1c6lem1 42158 ofaddmndmap 48331 lincsum 48418 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |