Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismnd | Structured version Visualization version GIF version |
Description: The predicate "is a monoid". This is the definig theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 18308), whose operation is associative (so, a semigroup, see also mndass 18309) and has a two-sided neutral element (see mndid 18310). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
Ref | Expression |
---|---|
ismnd.b | ⊢ 𝐵 = (Base‘𝐺) |
ismnd.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ismnd | ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ismnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | ismnddef 18302 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
4 | rexn0 4438 | . . . 4 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → 𝐵 ≠ ∅) | |
5 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
6 | 1, 5 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
7 | 6 | necon1ai 2970 | . . . 4 ⊢ (𝐵 ≠ ∅ → 𝐺 ∈ V) |
8 | 1, 2 | issgrpv 18292 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
10 | 9 | pm5.32ri 575 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
11 | 3, 10 | bitri 274 | 1 ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Smgrpcsgrp 18289 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: mndid 18310 ismndd 18322 mndpropd 18325 pwmnd 18491 mhmmnd 18612 signswmnd 32436 nn0mnd 45261 |
Copyright terms: Public domain | W3C validator |