![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismnd | Structured version Visualization version GIF version |
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 18673), whose operation is associative (so, a semigroup, see also mndass 18674) and has a two-sided neutral element (see mndid 18675). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.) |
Ref | Expression |
---|---|
ismnd.b | ⊢ 𝐵 = (Base‘𝐺) |
ismnd.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
ismnd | ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | ismnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | ismnddef 18667 | . 2 ⊢ (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
4 | rexn0 4510 | . . . 4 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → 𝐵 ≠ ∅) | |
5 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (Base‘𝐺) = ∅) | |
6 | 1, 5 | eqtrid 2783 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝐵 = ∅) |
7 | 6 | necon1ai 2967 | . . . 4 ⊢ (𝐵 ≠ ∅ → 𝐺 ∈ V) |
8 | 1, 2 | issgrpv 18652 | . . . 4 ⊢ (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
9 | 4, 7, 8 | 3syl 18 | . . 3 ⊢ (∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))))) |
10 | 9 | pm5.32ri 575 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
11 | 3, 10 | bitri 275 | 1 ⊢ (𝐺 ∈ Mnd ↔ (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐 ∈ 𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ∅c0 4322 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 +gcplusg 17204 Smgrpcsgrp 18649 Mndcmnd 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-mgm 18571 df-sgrp 18650 df-mnd 18666 |
This theorem is referenced by: mndid 18675 ismndd 18687 mndpropd 18690 pwmnd 18860 mhmmnd 18990 signswmnd 34032 nn0mnd 47016 |
Copyright terms: Public domain | W3C validator |