MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismnd Structured version   Visualization version   GIF version

Theorem ismnd 18691
Description: The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 18696), whose operation is associative (so, a semigroup, see also mndass 18697) and has a two-sided neutral element (see mndid 18698). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnd.b 𝐵 = (Base‘𝐺)
ismnd.p + = (+g𝐺)
Assertion
Ref Expression
ismnd (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   𝐵,𝑒,𝑎   𝐺,𝑎,𝑏,𝑐   + ,𝑎,𝑒   + ,𝑏,𝑐
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem ismnd
StepHypRef Expression
1 ismnd.b . . 3 𝐵 = (Base‘𝐺)
2 ismnd.p . . 3 + = (+g𝐺)
31, 2ismnddef 18690 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
4 rexn0 4507 . . . 4 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → 𝐵 ≠ ∅)
5 fvprc 6884 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
61, 5eqtrid 2780 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
76necon1ai 2964 . . . 4 (𝐵 ≠ ∅ → 𝐺 ∈ V)
81, 2issgrpv 18675 . . . 4 (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
94, 7, 83syl 18 . . 3 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
109pm5.32ri 575 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
113, 10bitri 275 1 (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  c0 4319  cfv 6543  (class class class)co 7415  Basecbs 17174  +gcplusg 17227  Smgrpcsgrp 18672  Mndcmnd 18688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-iota 6495  df-fv 6551  df-ov 7418  df-mgm 18594  df-sgrp 18673  df-mnd 18689
This theorem is referenced by:  mndid  18698  ismndd  18710  mndpropd  18713  pwmnd  18883  mhmmnd  19014  signswmnd  34184  nn0mnd  47232
  Copyright terms: Public domain W3C validator