MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismnd Structured version   Visualization version   GIF version

Theorem ismnd 17906
Description: The predicate "is a monoid". This is the definig theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 17911), whose operation is associative (so, a semigroup, see also mndass 17912) and has a two-sided neutral element (see mndid 17913). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnd.b 𝐵 = (Base‘𝐺)
ismnd.p + = (+g𝐺)
Assertion
Ref Expression
ismnd (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Distinct variable groups:   𝐵,𝑎,𝑏,𝑐   𝐵,𝑒,𝑎   𝐺,𝑎,𝑏,𝑐   + ,𝑎,𝑒   + ,𝑏,𝑐
Allowed substitution hint:   𝐺(𝑒)

Proof of Theorem ismnd
StepHypRef Expression
1 ismnd.b . . 3 𝐵 = (Base‘𝐺)
2 ismnd.p . . 3 + = (+g𝐺)
31, 2ismnddef 17905 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
4 rexn0 4412 . . . 4 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → 𝐵 ≠ ∅)
5 fvprc 6638 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
61, 5syl5eq 2845 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
76necon1ai 3014 . . . 4 (𝐵 ≠ ∅ → 𝐺 ∈ V)
81, 2issgrpv 17895 . . . 4 (𝐺 ∈ V → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
94, 7, 83syl 18 . . 3 (∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎) → (𝐺 ∈ Smgrp ↔ ∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐)))))
109pm5.32ri 579 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)) ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
113, 10bitri 278 1 (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  c0 4243  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Smgrpcsgrp 17892  Mndcmnd 17903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-nul 5174  ax-pow 5231
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-mgm 17844  df-sgrp 17893  df-mnd 17904
This theorem is referenced by:  mndid  17913  ismndd  17925  mndpropd  17928  pwmnd  18094  mhmmnd  18213  signswmnd  31937  nn0mnd  44439
  Copyright terms: Public domain W3C validator