MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndass Structured version   Visualization version   GIF version

Theorem mndass 18652
Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
Assertion
Ref Expression
mndass ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem mndass
StepHypRef Expression
1 mndsgrp 18649 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
2 mndcl.b . . 3 𝐵 = (Base‘𝐺)
3 mndcl.p . . 3 + = (+g𝐺)
42, 3sgrpass 18634 . 2 ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 580 1 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Smgrpcsgrp 18627  Mndcmnd 18643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-ov 7372  df-sgrp 18628  df-mnd 18644
This theorem is referenced by:  mnd32g  18655  mnd12g  18656  mnd4g  18657  issubmnd  18670  mndinvmod  18673  prdsmndd  18679  imasmnd  18684  mndvass  18707  mndind  18737  grpass  18856  mhmmnd  18978  cntzsubm  19252  oppgmnd  19268  frgp0  19674  mulgnn0di  19739  gsumval3eu  19818  gsumval3  19821  srgass  20114  srgcom4  20134  ringass  20173  chfacfscmulgsum  22780  chfacfpmmulgsum  22784  mndassd  33007  slmdass  33182  lsmssass  33366  mndmolinv  42076  primrootsunit1  42078  invginvrid  48348  mndtccatid  49569
  Copyright terms: Public domain W3C validator