| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndass | Structured version Visualization version GIF version | ||
| Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.) |
| Ref | Expression |
|---|---|
| mndcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndcl.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mndass | ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndsgrp 18667 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) | |
| 2 | mndcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mndcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | 2, 3 | sgrpass 18652 | . 2 ⊢ ((𝐺 ∈ Smgrp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐺 ∈ Mnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Smgrpcsgrp 18645 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: mnd32g 18673 mnd12g 18674 mnd4g 18675 issubmnd 18688 mndinvmod 18691 prdsmndd 18697 imasmnd 18702 mndvass 18725 mndind 18755 grpass 18874 mhmmnd 18996 cntzsubm 19270 oppgmnd 19286 frgp0 19690 mulgnn0di 19755 gsumval3eu 19834 gsumval3 19837 srgass 20103 srgcom4 20123 ringass 20162 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 mndassd 32964 slmdass 33166 lsmssass 33373 mndmolinv 42083 primrootsunit1 42085 invginvrid 48355 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |