MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndass Structured version   Visualization version   GIF version

Theorem mndass 18670
Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
Assertion
Ref Expression
mndass ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem mndass
StepHypRef Expression
1 mndsgrp 18667 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
2 mndcl.b . . 3 𝐵 = (Base‘𝐺)
3 mndcl.p . . 3 + = (+g𝐺)
42, 3sgrpass 18652 . 2 ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 580 1 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Smgrpcsgrp 18645  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  mnd32g  18673  mnd12g  18674  mnd4g  18675  issubmnd  18688  mndinvmod  18691  prdsmndd  18697  imasmnd  18702  mndvass  18725  mndind  18755  grpass  18874  mhmmnd  18996  cntzsubm  19270  oppgmnd  19286  frgp0  19690  mulgnn0di  19755  gsumval3eu  19834  gsumval3  19837  srgass  20103  srgcom4  20123  ringass  20162  chfacfscmulgsum  22747  chfacfpmmulgsum  22751  mndassd  32964  slmdass  33166  lsmssass  33373  mndmolinv  42083  primrootsunit1  42085  invginvrid  48355  mndtccatid  49576
  Copyright terms: Public domain W3C validator