MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndass Structured version   Visualization version   GIF version

Theorem mndass 18668
Description: A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
Assertion
Ref Expression
mndass ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))

Proof of Theorem mndass
StepHypRef Expression
1 mndsgrp 18665 . 2 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
2 mndcl.b . . 3 𝐵 = (Base‘𝐺)
3 mndcl.p . . 3 + = (+g𝐺)
42, 3sgrpass 18650 . 2 ((𝐺 ∈ Smgrp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
51, 4sylan 580 1 ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6543  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  Smgrpcsgrp 18643  Mndcmnd 18659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-iota 6495  df-fv 6551  df-ov 7414  df-sgrp 18644  df-mnd 18660
This theorem is referenced by:  mnd32g  18671  mnd12g  18672  mnd4g  18673  issubmnd  18686  mndinvmod  18689  prdsmndd  18692  imasmnd  18697  mndind  18745  grpass  18864  mhmmnd  18983  cntzsubm  19243  oppgmnd  19262  frgp0  19669  mulgnn0di  19734  gsumval3eu  19813  gsumval3  19816  srgass  20088  srgcom4  20108  ringass  20147  mndvass  22114  chfacfscmulgsum  22582  chfacfpmmulgsum  22586  slmdass  32616  lsmssass  32774  invginvrid  47132  mndtccatid  47801
  Copyright terms: Public domain W3C validator