MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndid Structured version   Visualization version   GIF version

Theorem mndid 18310
Description: A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
Hypotheses
Ref Expression
mndcl.b 𝐵 = (Base‘𝐺)
mndcl.p + = (+g𝐺)
Assertion
Ref Expression
mndid (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, + ,𝑢   𝑢,𝐵   𝑢,𝐺   𝑢, +

Proof of Theorem mndid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndcl.b . . 3 𝐵 = (Base‘𝐺)
2 mndcl.p . . 3 + = (+g𝐺)
31, 2ismnd 18303 . 2 (𝐺 ∈ Mnd ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)))
43simprbi 496 1 (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by:  mndideu  18311  mndidcl  18315  mndlrid  18319  prds0g  18334
  Copyright terms: Public domain W3C validator