| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ofr | Structured version Visualization version GIF version | ||
| Description: Define the function relation map. The definition is designed so that if 𝑅 is a binary relation, then ∘r 𝑅 is the analogous relation on functions which is true when each element of the left function relates to the corresponding element of the right function. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-ofr | ⊢ ∘r 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | cofr 7696 | . 2 class ∘r 𝑅 |
| 3 | vx | . . . . . . 7 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . . . 6 class 𝑥 |
| 5 | vf | . . . . . . 7 setvar 𝑓 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑓 |
| 7 | 4, 6 | cfv 6561 | . . . . 5 class (𝑓‘𝑥) |
| 8 | vg | . . . . . . 7 setvar 𝑔 | |
| 9 | 8 | cv 1539 | . . . . . 6 class 𝑔 |
| 10 | 4, 9 | cfv 6561 | . . . . 5 class (𝑔‘𝑥) |
| 11 | 7, 10, 1 | wbr 5143 | . . . 4 wff (𝑓‘𝑥)𝑅(𝑔‘𝑥) |
| 12 | 6 | cdm 5685 | . . . . 5 class dom 𝑓 |
| 13 | 9 | cdm 5685 | . . . . 5 class dom 𝑔 |
| 14 | 12, 13 | cin 3950 | . . . 4 class (dom 𝑓 ∩ dom 𝑔) |
| 15 | 11, 3, 14 | wral 3061 | . . 3 wff ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) |
| 16 | 15, 5, 8 | copab 5205 | . 2 class {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| 17 | 2, 16 | wceq 1540 | 1 wff ∘r 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: ofreq 7701 nfofr 7704 ofrfvalg 7705 psrbaglesupp 21942 |
| Copyright terms: Public domain | W3C validator |