Step | Hyp | Ref
| Expression |
1 | | ofrfvalg.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
2 | | ofrfvalg.4 |
. . 3
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
3 | | dmeq 5812 |
. . . . . 6
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
4 | | dmeq 5812 |
. . . . . 6
⊢ (𝑔 = 𝐺 → dom 𝑔 = dom 𝐺) |
5 | 3, 4 | ineqan12d 4148 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom 𝐺)) |
6 | | fveq1 6773 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
7 | | fveq1 6773 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) |
8 | 6, 7 | breqan12d 5090 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
9 | 5, 8 | raleqbidv 3336 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
10 | | df-ofr 7534 |
. . . 4
⊢
∘r 𝑅 =
{〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
11 | 9, 10 | brabga 5447 |
. . 3
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
12 | 1, 2, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
13 | | ofrfvalg.1 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐴) |
14 | 13 | fndmd 6538 |
. . . . 5
⊢ (𝜑 → dom 𝐹 = 𝐴) |
15 | | ofrfvalg.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 Fn 𝐵) |
16 | 15 | fndmd 6538 |
. . . . 5
⊢ (𝜑 → dom 𝐺 = 𝐵) |
17 | 14, 16 | ineq12d 4147 |
. . . 4
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = (𝐴 ∩ 𝐵)) |
18 | | ofrfvalg.5 |
. . . 4
⊢ (𝐴 ∩ 𝐵) = 𝑆 |
19 | 17, 18 | eqtrdi 2794 |
. . 3
⊢ (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝑆) |
20 | 19 | raleqdv 3348 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (dom 𝐹 ∩ dom 𝐺)(𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥))) |
21 | | inss1 4162 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
22 | 18, 21 | eqsstrri 3956 |
. . . . . 6
⊢ 𝑆 ⊆ 𝐴 |
23 | 22 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴) |
24 | | ofrfvalg.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐶) |
25 | 23, 24 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐹‘𝑥) = 𝐶) |
26 | | inss2 4163 |
. . . . . . 7
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
27 | 18, 26 | eqsstrri 3956 |
. . . . . 6
⊢ 𝑆 ⊆ 𝐵 |
28 | 27 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐵) |
29 | | ofrfvalg.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐺‘𝑥) = 𝐷) |
30 | 28, 29 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐺‘𝑥) = 𝐷) |
31 | 25, 30 | breq12d 5087 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → ((𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ 𝐶𝑅𝐷)) |
32 | 31 | ralbidva 3111 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝑆 (𝐹‘𝑥)𝑅(𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |
33 | 12, 20, 32 | 3bitrd 305 |
1
⊢ (𝜑 → (𝐹 ∘r 𝑅𝐺 ↔ ∀𝑥 ∈ 𝑆 𝐶𝑅𝐷)) |