MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofreq Structured version   Visualization version   GIF version

Theorem ofreq 7614
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆)

Proof of Theorem ofreq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5093 . . . 4 (𝑅 = 𝑆 → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝑓𝑥)𝑆(𝑔𝑥)))
21ralbidv 3155 . . 3 (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)))
32opabbidv 5157 . 2 (𝑅 = 𝑆 → {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)} = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)})
4 df-ofr 7611 . 2 r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
5 df-ofr 7611 . 2 r 𝑆 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)}
63, 4, 53eqtr4g 2791 1 (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3047  cin 3901   class class class wbr 5091  {copab 5153  dom cdm 5616  cfv 6481  r cofr 7609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-br 5092  df-opab 5154  df-ofr 7611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator