![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ofreq | Structured version Visualization version GIF version |
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofreq | ⊢ (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5144 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑥)𝑆(𝑔‘𝑥))) | |
2 | 1 | ralbidv 3173 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | opabbidv 5208 | . 2 ⊢ (𝑅 = 𝑆 → {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)}) |
4 | df-ofr 7680 | . 2 ⊢ ∘r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} | |
5 | df-ofr 7680 | . 2 ⊢ ∘r 𝑆 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)} | |
6 | 3, 4, 5 | 3eqtr4g 2793 | 1 ⊢ (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∀wral 3057 ∩ cin 3944 class class class wbr 5142 {copab 5204 dom cdm 5672 ‘cfv 6542 ∘r cofr 7678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-br 5143 df-opab 5205 df-ofr 7680 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |