MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofreq Structured version   Visualization version   GIF version

Theorem ofreq 7718
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆)

Proof of Theorem ofreq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5168 . . . 4 (𝑅 = 𝑆 → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝑓𝑥)𝑆(𝑔𝑥)))
21ralbidv 3184 . . 3 (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)))
32opabbidv 5232 . 2 (𝑅 = 𝑆 → {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)} = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)})
4 df-ofr 7715 . 2 r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
5 df-ofr 7715 . 2 r 𝑆 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)}
63, 4, 53eqtr4g 2805 1 (𝑅 = 𝑆 → ∘r 𝑅 = ∘r 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3067  cin 3975   class class class wbr 5166  {copab 5228  dom cdm 5700  cfv 6573  r cofr 7713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-br 5167  df-opab 5229  df-ofr 7715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator