Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version |
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofr 7512 | . 2 ⊢ ∘r 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
3 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
6 | 3, 4, 5 | nfbr 5117 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
7 | 2, 6 | nfralw 3149 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
8 | 7 | nfopab 5139 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
9 | 1, 8 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2886 ∀wral 3063 ∩ cin 3882 class class class wbr 5070 {copab 5132 dom cdm 5580 ‘cfv 6418 ∘r cofr 7510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-ofr 7512 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |