![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version |
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofr 7698 | . 2 ⊢ ∘r 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
3 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
6 | 3, 4, 5 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
7 | 2, 6 | nfralw 3309 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
8 | 7 | nfopab 5217 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
9 | 1, 8 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ∀wral 3059 ∩ cin 3962 class class class wbr 5148 {copab 5210 dom cdm 5689 ‘cfv 6563 ∘r cofr 7696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-ofr 7698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |