| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ofr 7611 | . 2 ⊢ ∘r 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 3 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 6 | 3, 4, 5 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 7 | 2, 6 | nfralw 3279 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 8 | 7 | nfopab 5158 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
| 9 | 1, 8 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ∀wral 3047 ∩ cin 3896 class class class wbr 5089 {copab 5151 dom cdm 5614 ‘cfv 6481 ∘r cofr 7609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-ofr 7611 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |