Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version |
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofr 7534 | . 2 ⊢ ∘r 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
2 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
3 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
6 | 3, 4, 5 | nfbr 5121 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
7 | 2, 6 | nfralw 3151 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
8 | 7 | nfopab 5143 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
9 | 1, 8 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2887 ∀wral 3064 ∩ cin 3886 class class class wbr 5074 {copab 5136 dom cdm 5589 ‘cfv 6433 ∘r cofr 7532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-ofr 7534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |