| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version | ||
| Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| nfof.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ofr 7654 | . 2 ⊢ ∘r 𝑅 = {〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
| 3 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
| 4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
| 5 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
| 6 | 3, 4, 5 | nfbr 5154 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 7 | 2, 6 | nfralw 3285 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
| 8 | 7 | nfopab 5176 | . 2 ⊢ Ⅎ𝑥{〈𝑢, 𝑣〉 ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
| 9 | 1, 8 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ∀wral 3044 ∩ cin 3913 class class class wbr 5107 {copab 5169 dom cdm 5638 ‘cfv 6511 ∘r cofr 7652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-ofr 7654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |