![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version |
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofr 7686 | . 2 ⊢ ∘r 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
3 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
6 | 3, 4, 5 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
7 | 2, 6 | nfralw 3305 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
8 | 7 | nfopab 5217 | . 2 ⊢ Ⅎ𝑥{⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
9 | 1, 8 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2879 ∀wral 3058 ∩ cin 3946 class class class wbr 5148 {copab 5210 dom cdm 5678 ‘cfv 6548 ∘r cofr 7684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-ofr 7686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |