![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfofr | Structured version Visualization version GIF version |
Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
nfof.1 | ⊢ Ⅎ𝑥𝑅 |
Ref | Expression |
---|---|
nfofr | ⊢ Ⅎ𝑥 ∘r 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofr 7670 | . 2 ⊢ ∘r 𝑅 = {⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥(dom 𝑢 ∩ dom 𝑣) | |
3 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥(𝑢‘𝑤) | |
4 | nfof.1 | . . . . 5 ⊢ Ⅎ𝑥𝑅 | |
5 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥(𝑣‘𝑤) | |
6 | 3, 4, 5 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
7 | 2, 6 | nfralw 3308 | . . 3 ⊢ Ⅎ𝑥∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤) |
8 | 7 | nfopab 5217 | . 2 ⊢ Ⅎ𝑥{⟨𝑢, 𝑣⟩ ∣ ∀𝑤 ∈ (dom 𝑢 ∩ dom 𝑣)(𝑢‘𝑤)𝑅(𝑣‘𝑤)} |
9 | 1, 8 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥 ∘r 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2883 ∀wral 3061 ∩ cin 3947 class class class wbr 5148 {copab 5210 dom cdm 5676 ‘cfv 6543 ∘r cofr 7668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-ofr 7670 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |