| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-of | Structured version Visualization version GIF version | ||
| Description: Define the function operation map. The definition is designed so that if 𝑅 is a binary operation, then ∘f 𝑅 is the analogous operation on functions which corresponds to applying 𝑅 pointwise to the values of the functions. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-of | ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cR | . . 3 class 𝑅 | |
| 2 | 1 | cof 7695 | . 2 class ∘f 𝑅 |
| 3 | vf | . . 3 setvar 𝑓 | |
| 4 | vg | . . 3 setvar 𝑔 | |
| 5 | cvv 3480 | . . 3 class V | |
| 6 | vx | . . . 4 setvar 𝑥 | |
| 7 | 3 | cv 1539 | . . . . . 6 class 𝑓 |
| 8 | 7 | cdm 5685 | . . . . 5 class dom 𝑓 |
| 9 | 4 | cv 1539 | . . . . . 6 class 𝑔 |
| 10 | 9 | cdm 5685 | . . . . 5 class dom 𝑔 |
| 11 | 8, 10 | cin 3950 | . . . 4 class (dom 𝑓 ∩ dom 𝑔) |
| 12 | 6 | cv 1539 | . . . . . 6 class 𝑥 |
| 13 | 12, 7 | cfv 6561 | . . . . 5 class (𝑓‘𝑥) |
| 14 | 12, 9 | cfv 6561 | . . . . 5 class (𝑔‘𝑥) |
| 15 | 13, 14, 1 | co 7431 | . . . 4 class ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) |
| 16 | 6, 11, 15 | cmpt 5225 | . . 3 class (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) |
| 17 | 3, 4, 5, 5, 16 | cmpo 7433 | . 2 class (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| 18 | 2, 17 | wceq 1540 | 1 wff ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: ofeqd 7699 ofexg 7702 nfof 7703 offval 7706 offval3 8007 ofmres 8009 psdmul 22170 of0r 32688 |
| Copyright terms: Public domain | W3C validator |