MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeqd Structured version   Visualization version   GIF version

Theorem ofeqd 7716
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
ofeqd (𝜑 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeqd
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5 (𝜑𝑅 = 𝑆)
21oveqd 7465 . . . 4 (𝜑 → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 5268 . . 3 (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpoeq3dv 7529 . 2 (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 7714 . 2 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 7714 . 2 f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2805 1 (𝜑 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3488  cin 3975  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6525  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  ofeq  7717  psrval  21958  resspsradd  22018  fedgmullem1  33642  fedgmullem2  33643  sitmval  34314  ldualset  39081  mendval  43140
  Copyright terms: Public domain W3C validator