Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ofeqd | Structured version Visualization version GIF version |
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
ofeqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
Ref | Expression |
---|---|
ofeqd | ⊢ (𝜑 → ∘f 𝑅 = ∘f 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofeqd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 = 𝑆) | |
2 | 1 | oveqd 7312 | . . . 4 ⊢ (𝜑 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | mpteq2dv 5179 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
4 | 3 | mpoeq3dv 7374 | . 2 ⊢ (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
5 | df-of 7553 | . 2 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
6 | df-of 7553 | . 2 ⊢ ∘f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
7 | 4, 5, 6 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → ∘f 𝑅 = ∘f 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3434 ∩ cin 3888 ↦ cmpt 5160 dom cdm 5591 ‘cfv 6447 (class class class)co 7295 ∈ cmpo 7297 ∘f cof 7551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3436 df-in 3896 df-ss 3906 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-iota 6399 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 |
This theorem is referenced by: ofeq 7556 psrval 21146 resspsradd 21213 fedgmullem1 31738 fedgmullem2 31739 sitmval 32344 ldualset 37165 mendval 41032 |
Copyright terms: Public domain | W3C validator |