MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeqd Structured version   Visualization version   GIF version

Theorem ofeqd 7658
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
ofeqd (𝜑 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeqd
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5 (𝜑𝑅 = 𝑆)
21oveqd 7407 . . . 4 (𝜑 → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 5204 . . 3 (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpoeq3dv 7471 . 2 (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 7656 . 2 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 7656 . 2 f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2790 1 (𝜑 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3450  cin 3916  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by:  ofeq  7659  psrval  21831  resspsradd  21891  elrgspnlem1  33200  fedgmullem1  33632  fedgmullem2  33633  sitmval  34347  ldualset  39125  mendval  43175
  Copyright terms: Public domain W3C validator