| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ofeqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| ofeqd.1 | ⊢ (𝜑 → 𝑅 = 𝑆) |
| Ref | Expression |
|---|---|
| ofeqd | ⊢ (𝜑 → ∘f 𝑅 = ∘f 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofeqd.1 | . . . . 5 ⊢ (𝜑 → 𝑅 = 𝑆) | |
| 2 | 1 | oveqd 7422 | . . . 4 ⊢ (𝜑 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
| 3 | 2 | mpteq2dv 5215 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
| 4 | 3 | mpoeq3dv 7486 | . 2 ⊢ (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
| 5 | df-of 7671 | . 2 ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | df-of 7671 | . 2 ⊢ ∘f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
| 7 | 4, 5, 6 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → ∘f 𝑅 = ∘f 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3459 ∩ cin 3925 ↦ cmpt 5201 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ∘f cof 7669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-iota 6484 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 |
| This theorem is referenced by: ofeq 7674 psrval 21875 resspsradd 21935 elrgspnlem1 33237 fedgmullem1 33669 fedgmullem2 33670 sitmval 34381 ldualset 39143 mendval 43203 |
| Copyright terms: Public domain | W3C validator |