MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ofeqd Structured version   Visualization version   GIF version

Theorem ofeqd 7612
Description: Equality theorem for function operation, deduction form. (Contributed by SN, 11-Nov-2024.)
Hypothesis
Ref Expression
ofeqd.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
ofeqd (𝜑 → ∘f 𝑅 = ∘f 𝑆)

Proof of Theorem ofeqd
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofeqd.1 . . . . 5 (𝜑𝑅 = 𝑆)
21oveqd 7363 . . . 4 (𝜑 → ((𝑓𝑥)𝑅(𝑔𝑥)) = ((𝑓𝑥)𝑆(𝑔𝑥)))
32mpteq2dv 5183 . . 3 (𝜑 → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
43mpoeq3dv 7425 . 2 (𝜑 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥)))))
5 df-of 7610 . 2 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
6 df-of 7610 . 2 f 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑆(𝑔𝑥))))
74, 5, 63eqtr4g 2791 1 (𝜑 → ∘f 𝑅 = ∘f 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3436  cin 3896  cmpt 5170  dom cdm 5614  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3914  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610
This theorem is referenced by:  ofeq  7613  psrval  21852  resspsradd  21912  elrgspnlem1  33209  fedgmullem1  33642  fedgmullem2  33643  extdgfialglem1  33705  sitmval  34362  ldualset  39234  mendval  43282
  Copyright terms: Public domain W3C validator