MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesupp Structured version   Visualization version   GIF version

Theorem psrbaglesupp 21880
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesupp ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝐺(𝑓)

Proof of Theorem psrbaglesupp
Dummy variables 𝑥 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 7670 . . . . . 6 r ≤ = {⟨𝑎, 𝑏⟩ ∣ ∀𝑐 ∈ (dom 𝑎 ∩ dom 𝑏)(𝑎𝑐) ≤ (𝑏𝑐)}
21relopabiv 5799 . . . . 5 Rel ∘r
32brrelex1i 5710 . . . 4 (𝐺r𝐹𝐺 ∈ V)
433ad2ant3 1135 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 ∈ V)
5 simp2 1137 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
6 fcdmnn0suppg 12558 . . 3 ((𝐺 ∈ V ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
74, 5, 6syl2anc 584 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) = (𝐺 “ ℕ))
8 eldifi 4106 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
9 simp3 1138 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
105ffnd 6706 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
11 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1211psrbagf 21876 . . . . . . . . . . 11 (𝐹𝐷𝐹:𝐼⟶ℕ0)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
1413ffnd 6706 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
15 simp1 1136 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
16 inidm 4202 . . . . . . . . 9 (𝐼𝐼) = 𝐼
17 eqidd 2736 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
18 eqidd 2736 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
1910, 14, 4, 15, 16, 17, 18ofrfvalg 7677 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
209, 19mpbid 232 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
2120r19.21bi 3234 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
228, 21sylan2 593 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
23 fcdmnn0suppg 12558 . . . . . . . 8 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
2415, 13, 23syl2anc 584 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) = (𝐹 “ ℕ))
25 eqimss 4017 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2624, 25syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
27 c0ex 11227 . . . . . . 7 0 ∈ V
2827a1i 11 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 0 ∈ V)
2913, 26, 15, 28suppssrg 8193 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
3022, 29breqtrd 5145 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
31 ffvelcdm 7070 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
325, 8, 31syl2an 596 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
3332nn0ge0d 12563 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3432nn0red 12561 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
35 0re 11235 . . . . 5 0 ∈ ℝ
36 letri3 11318 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3734, 35, 36sylancl 586 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3830, 33, 37mpbir2and 713 . . 3 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
395, 38suppss 8191 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
407, 39eqsstrrd 3994 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cin 3925  wss 3926   class class class wbr 5119  ccnv 5653  dom cdm 5654  cima 5657  wf 6526  cfv 6530  (class class class)co 7403  r cofr 7668   supp csupp 8157  m cmap 8838  Fincfn 8957  cr 11126  0cc0 11127  cle 11268  cn 12238  0cn0 12499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500
This theorem is referenced by:  psrbaglecl  21881  psrbagcon  21883
  Copyright terms: Public domain W3C validator