Step | Hyp | Ref
| Expression |
1 | | df-ofr 7470 |
. . . . . 6
⊢
∘r ≤ = {〈𝑎, 𝑏〉 ∣ ∀𝑐 ∈ (dom 𝑎 ∩ dom 𝑏)(𝑎‘𝑐) ≤ (𝑏‘𝑐)} |
2 | 1 | relopabiv 5690 |
. . . . 5
⊢ Rel
∘r ≤ |
3 | 2 | brrelex1i 5605 |
. . . 4
⊢ (𝐺 ∘r ≤ 𝐹 → 𝐺 ∈ V) |
4 | 3 | 3ad2ant3 1137 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∈ V) |
5 | | simp2 1139 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺:𝐼⟶ℕ0) |
6 | | frnnn0suppg 12148 |
. . 3
⊢ ((𝐺 ∈ V ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) |
7 | 4, 5, 6 | syl2anc 587 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) |
8 | | eldifi 4041 |
. . . . . 6
⊢ (𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ)) → 𝑥 ∈ 𝐼) |
9 | | simp3 1140 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∘r ≤ 𝐹) |
10 | 5 | ffnd 6546 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 Fn 𝐼) |
11 | | psrbag.d |
. . . . . . . . . . . 12
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
12 | 11 | psrbagf 20877 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
13 | 12 | 3ad2ant1 1135 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹:𝐼⟶ℕ0) |
14 | 13 | ffnd 6546 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 Fn 𝐼) |
15 | | simp1 1138 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 ∈ 𝐷) |
16 | | inidm 4133 |
. . . . . . . . 9
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
17 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
18 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
19 | 10, 14, 4, 15, 16, 17, 18 | ofrfvalg 7476 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
20 | 9, 19 | mpbid 235 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
21 | 20 | r19.21bi 3130 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
22 | 8, 21 | sylan2 596 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
23 | | frnnn0suppg 12148 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
24 | 15, 13, 23 | syl2anc 587 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) |
25 | | eqimss 3957 |
. . . . . . 7
⊢ ((𝐹 supp 0) = (◡𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
26 | 24, 25 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) |
27 | | c0ex 10827 |
. . . . . . 7
⊢ 0 ∈
V |
28 | 27 | a1i 11 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 0 ∈
V) |
29 | 13, 26, 15, 28 | suppssrg 7939 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐹‘𝑥) = 0) |
30 | 22, 29 | breqtrd 5079 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ≤ 0) |
31 | | ffvelrn 6902 |
. . . . . 6
⊢ ((𝐺:𝐼⟶ℕ0 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) |
32 | 5, 8, 31 | syl2an 599 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ∈
ℕ0) |
33 | 32 | nn0ge0d 12153 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → 0 ≤ (𝐺‘𝑥)) |
34 | 32 | nn0red 12151 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ∈ ℝ) |
35 | | 0re 10835 |
. . . . 5
⊢ 0 ∈
ℝ |
36 | | letri3 10918 |
. . . . 5
⊢ (((𝐺‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((𝐺‘𝑥) = 0 ↔ ((𝐺‘𝑥) ≤ 0 ∧ 0 ≤ (𝐺‘𝑥)))) |
37 | 34, 35, 36 | sylancl 589 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → ((𝐺‘𝑥) = 0 ↔ ((𝐺‘𝑥) ≤ 0 ∧ 0 ≤ (𝐺‘𝑥)))) |
38 | 30, 33, 37 | mpbir2and 713 |
. . 3
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) = 0) |
39 | 5, 38 | suppss 7936 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 supp 0) ⊆ (◡𝐹 “ ℕ)) |
40 | 7, 39 | eqsstrrd 3940 |
1
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) |