| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-ofr 7699 | . . . . . 6
⊢ 
∘r ≤ = {〈𝑎, 𝑏〉 ∣ ∀𝑐 ∈ (dom 𝑎 ∩ dom 𝑏)(𝑎‘𝑐) ≤ (𝑏‘𝑐)} | 
| 2 | 1 | relopabiv 5829 | . . . . 5
⊢ Rel
∘r ≤ | 
| 3 | 2 | brrelex1i 5740 | . . . 4
⊢ (𝐺 ∘r ≤ 𝐹 → 𝐺 ∈ V) | 
| 4 | 3 | 3ad2ant3 1135 | . . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∈ V) | 
| 5 |  | simp2 1137 | . . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺:𝐼⟶ℕ0) | 
| 6 |  | fcdmnn0suppg 12587 | . . 3
⊢ ((𝐺 ∈ V ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) | 
| 7 | 4, 5, 6 | syl2anc 584 | . 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 supp 0) = (◡𝐺 “ ℕ)) | 
| 8 |  | eldifi 4130 | . . . . . 6
⊢ (𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ)) → 𝑥 ∈ 𝐼) | 
| 9 |  | simp3 1138 | . . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∘r ≤ 𝐹) | 
| 10 | 5 | ffnd 6736 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 Fn 𝐼) | 
| 11 |  | psrbag.d | . . . . . . . . . . . 12
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 12 | 11 | psrbagf 21939 | . . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) | 
| 13 | 12 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹:𝐼⟶ℕ0) | 
| 14 | 13 | ffnd 6736 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 Fn 𝐼) | 
| 15 |  | simp1 1136 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 ∈ 𝐷) | 
| 16 |  | inidm 4226 | . . . . . . . . 9
⊢ (𝐼 ∩ 𝐼) = 𝐼 | 
| 17 |  | eqidd 2737 | . . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) | 
| 18 |  | eqidd 2737 | . . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) | 
| 19 | 10, 14, 4, 15, 16, 17, 18 | ofrfvalg 7706 | . . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) | 
| 20 | 9, 19 | mpbid 232 | . . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥)) | 
| 21 | 20 | r19.21bi 3250 | . . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) | 
| 22 | 8, 21 | sylan2 593 | . . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) | 
| 23 |  | fcdmnn0suppg 12587 | . . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | 
| 24 | 15, 13, 23 | syl2anc 584 | . . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 supp 0) = (◡𝐹 “ ℕ)) | 
| 25 |  | eqimss 4041 | . . . . . . 7
⊢ ((𝐹 supp 0) = (◡𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) | 
| 26 | 24, 25 | syl 17 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 supp 0) ⊆ (◡𝐹 “ ℕ)) | 
| 27 |  | c0ex 11256 | . . . . . . 7
⊢ 0 ∈
V | 
| 28 | 27 | a1i 11 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 0 ∈
V) | 
| 29 | 13, 26, 15, 28 | suppssrg 8222 | . . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐹‘𝑥) = 0) | 
| 30 | 22, 29 | breqtrd 5168 | . . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ≤ 0) | 
| 31 |  | ffvelcdm 7100 | . . . . . 6
⊢ ((𝐺:𝐼⟶ℕ0 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) | 
| 32 | 5, 8, 31 | syl2an 596 | . . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ∈
ℕ0) | 
| 33 | 32 | nn0ge0d 12592 | . . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → 0 ≤ (𝐺‘𝑥)) | 
| 34 | 32 | nn0red 12590 | . . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) ∈ ℝ) | 
| 35 |  | 0re 11264 | . . . . 5
⊢ 0 ∈
ℝ | 
| 36 |  | letri3 11347 | . . . . 5
⊢ (((𝐺‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ)
→ ((𝐺‘𝑥) = 0 ↔ ((𝐺‘𝑥) ≤ 0 ∧ 0 ≤ (𝐺‘𝑥)))) | 
| 37 | 34, 35, 36 | sylancl 586 | . . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → ((𝐺‘𝑥) = 0 ↔ ((𝐺‘𝑥) ≤ 0 ∧ 0 ≤ (𝐺‘𝑥)))) | 
| 38 | 30, 33, 37 | mpbir2and 713 | . . 3
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (◡𝐹 “ ℕ))) → (𝐺‘𝑥) = 0) | 
| 39 | 5, 38 | suppss 8220 | . 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 supp 0) ⊆ (◡𝐹 “ ℕ)) | 
| 40 | 7, 39 | eqsstrrd 4018 | 1
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) |