MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesupp Structured version   Visualization version   GIF version

Theorem psrbaglesupp 20883
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesupp ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglesupp
Dummy variables 𝑥 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 7470 . . . . . 6 r ≤ = {⟨𝑎, 𝑏⟩ ∣ ∀𝑐 ∈ (dom 𝑎 ∩ dom 𝑏)(𝑎𝑐) ≤ (𝑏𝑐)}
21relopabiv 5690 . . . . 5 Rel ∘r
32brrelex1i 5605 . . . 4 (𝐺r𝐹𝐺 ∈ V)
433ad2ant3 1137 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 ∈ V)
5 simp2 1139 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
6 frnnn0suppg 12148 . . 3 ((𝐺 ∈ V ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
74, 5, 6syl2anc 587 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) = (𝐺 “ ℕ))
8 eldifi 4041 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
9 simp3 1140 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
105ffnd 6546 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
11 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1211psrbagf 20877 . . . . . . . . . . 11 (𝐹𝐷𝐹:𝐼⟶ℕ0)
13123ad2ant1 1135 . . . . . . . . . 10 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
1413ffnd 6546 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
15 simp1 1138 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
16 inidm 4133 . . . . . . . . 9 (𝐼𝐼) = 𝐼
17 eqidd 2738 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
18 eqidd 2738 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
1910, 14, 4, 15, 16, 17, 18ofrfvalg 7476 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
209, 19mpbid 235 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
2120r19.21bi 3130 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
228, 21sylan2 596 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
23 frnnn0suppg 12148 . . . . . . . 8 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
2415, 13, 23syl2anc 587 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) = (𝐹 “ ℕ))
25 eqimss 3957 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2624, 25syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
27 c0ex 10827 . . . . . . 7 0 ∈ V
2827a1i 11 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 0 ∈ V)
2913, 26, 15, 28suppssrg 7939 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
3022, 29breqtrd 5079 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
31 ffvelrn 6902 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
325, 8, 31syl2an 599 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
3332nn0ge0d 12153 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3432nn0red 12151 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
35 0re 10835 . . . . 5 0 ∈ ℝ
36 letri3 10918 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3734, 35, 36sylancl 589 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3830, 33, 37mpbir2and 713 . . 3 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
395, 38suppss 7936 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
407, 39eqsstrrd 3940 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  {crab 3065  Vcvv 3408  cdif 3863  cin 3865  wss 3866   class class class wbr 5053  ccnv 5550  dom cdm 5551  cima 5554  wf 6376  cfv 6380  (class class class)co 7213  r cofr 7468   supp csupp 7903  m cmap 8508  Fincfn 8626  cr 10728  0cc0 10729  cle 10868  cn 11830  0cn0 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091
This theorem is referenced by:  psrbaglecl  20885  psrbagcon  20889
  Copyright terms: Public domain W3C validator