MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglesupp Structured version   Visualization version   GIF version

Theorem psrbaglesupp 21326
Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglesupp ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglesupp
Dummy variables 𝑥 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 7618 . . . . . 6 r ≤ = {⟨𝑎, 𝑏⟩ ∣ ∀𝑐 ∈ (dom 𝑎 ∩ dom 𝑏)(𝑎𝑐) ≤ (𝑏𝑐)}
21relopabiv 5776 . . . . 5 Rel ∘r
32brrelex1i 5688 . . . 4 (𝐺r𝐹𝐺 ∈ V)
433ad2ant3 1135 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 ∈ V)
5 simp2 1137 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
6 fcdmnn0suppg 12471 . . 3 ((𝐺 ∈ V ∧ 𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
74, 5, 6syl2anc 584 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) = (𝐺 “ ℕ))
8 eldifi 4086 . . . . . 6 (𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ)) → 𝑥𝐼)
9 simp3 1138 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
105ffnd 6669 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
11 psrbag.d . . . . . . . . . . . 12 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1211psrbagf 21320 . . . . . . . . . . 11 (𝐹𝐷𝐹:𝐼⟶ℕ0)
13123ad2ant1 1133 . . . . . . . . . 10 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
1413ffnd 6669 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
15 simp1 1136 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
16 inidm 4178 . . . . . . . . 9 (𝐼𝐼) = 𝐼
17 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
18 eqidd 2737 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
1910, 14, 4, 15, 16, 17, 18ofrfvalg 7625 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
209, 19mpbid 231 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
2120r19.21bi 3234 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
228, 21sylan2 593 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ (𝐹𝑥))
23 fcdmnn0suppg 12471 . . . . . . . 8 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
2415, 13, 23syl2anc 584 . . . . . . 7 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) = (𝐹 “ ℕ))
25 eqimss 4000 . . . . . . 7 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
2624, 25syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
27 c0ex 11149 . . . . . . 7 0 ∈ V
2827a1i 11 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 0 ∈ V)
2913, 26, 15, 28suppssrg 8128 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
3022, 29breqtrd 5131 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ≤ 0)
31 ffvelcdm 7032 . . . . . 6 ((𝐺:𝐼⟶ℕ0𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
325, 8, 31syl2an 596 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℕ0)
3332nn0ge0d 12476 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → 0 ≤ (𝐺𝑥))
3432nn0red 12474 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) ∈ ℝ)
35 0re 11157 . . . . 5 0 ∈ ℝ
36 letri3 11240 . . . . 5 (((𝐺𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3734, 35, 36sylancl 586 . . . 4 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → ((𝐺𝑥) = 0 ↔ ((𝐺𝑥) ≤ 0 ∧ 0 ≤ (𝐺𝑥))))
3830, 33, 37mpbir2and 711 . . 3 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐺𝑥) = 0)
395, 38suppss 8125 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 supp 0) ⊆ (𝐹 “ ℕ))
407, 39eqsstrrd 3983 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  cin 3909  wss 3910   class class class wbr 5105  ccnv 5632  dom cdm 5633  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  r cofr 7616   supp csupp 8092  m cmap 8765  Fincfn 8883  cr 11050  0cc0 11051  cle 11190  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414
This theorem is referenced by:  psrbaglecl  21328  psrbagcon  21332
  Copyright terms: Public domain W3C validator