Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > redundeq1 | Structured version Visualization version GIF version |
Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
redundeq1.1 | ⊢ 𝐴 = 𝐷 |
Ref | Expression |
---|---|
redundeq1 | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redundeq1.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
2 | 1 | sseq1i 3945 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐷 ⊆ 𝐵) |
3 | 1 | ineq1i 4139 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐷 ∩ 𝐶) |
4 | 3 | eqeq1i 2743 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) ↔ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
5 | 2, 4 | anbi12i 626 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
6 | df-redund 36664 | . 2 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
7 | df-redund 36664 | . 2 ⊢ (𝐷 Redund 〈𝐵, 𝐶〉 ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
8 | 5, 6, 7 | 3bitr4i 302 | 1 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 Redund wredund 36281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-redund 36664 |
This theorem is referenced by: refrelsredund3 36674 |
Copyright terms: Public domain | W3C validator |