Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > redundeq1 | Structured version Visualization version GIF version |
Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
Ref | Expression |
---|---|
redundeq1.1 | ⊢ 𝐴 = 𝐷 |
Ref | Expression |
---|---|
redundeq1 | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redundeq1.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
2 | 1 | sseq1i 3905 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐷 ⊆ 𝐵) |
3 | 1 | ineq1i 4099 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐷 ∩ 𝐶) |
4 | 3 | eqeq1i 2743 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) ↔ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
5 | 2, 4 | anbi12i 630 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
6 | df-redund 36380 | . 2 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
7 | df-redund 36380 | . 2 ⊢ (𝐷 Redund 〈𝐵, 𝐶〉 ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
8 | 5, 6, 7 | 3bitr4i 306 | 1 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∩ cin 3842 ⊆ wss 3843 Redund wredund 35997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-in 3850 df-ss 3860 df-redund 36380 |
This theorem is referenced by: refrelsredund3 36390 |
Copyright terms: Public domain | W3C validator |