Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  redundeq1 Structured version   Visualization version   GIF version

Theorem redundeq1 38798
Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.)
Hypothesis
Ref Expression
redundeq1.1 𝐴 = 𝐷
Assertion
Ref Expression
redundeq1 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ 𝐷 Redund ⟨𝐵, 𝐶⟩)

Proof of Theorem redundeq1
StepHypRef Expression
1 redundeq1.1 . . . 4 𝐴 = 𝐷
21sseq1i 3959 . . 3 (𝐴𝐵𝐷𝐵)
31ineq1i 4165 . . . 4 (𝐴𝐶) = (𝐷𝐶)
43eqeq1i 2738 . . 3 ((𝐴𝐶) = (𝐵𝐶) ↔ (𝐷𝐶) = (𝐵𝐶))
52, 4anbi12i 628 . 2 ((𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)) ↔ (𝐷𝐵 ∧ (𝐷𝐶) = (𝐵𝐶)))
6 df-redund 38793 . 2 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
7 df-redund 38793 . 2 (𝐷 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐷𝐵 ∧ (𝐷𝐶) = (𝐵𝐶)))
85, 6, 73bitr4i 303 1 (𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ 𝐷 Redund ⟨𝐵, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  cin 3897  wss 3898   Redund wredund 38316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-in 3905  df-ss 3915  df-redund 38793
This theorem is referenced by:  refrelsredund3  38803
  Copyright terms: Public domain W3C validator