| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > redundeq1 | Structured version Visualization version GIF version | ||
| Description: Equivalence of redundancy predicates. (Contributed by Peter Mazsa, 26-Oct-2022.) |
| Ref | Expression |
|---|---|
| redundeq1.1 | ⊢ 𝐴 = 𝐷 |
| Ref | Expression |
|---|---|
| redundeq1 | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | redundeq1.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
| 2 | 1 | sseq1i 4012 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐷 ⊆ 𝐵) |
| 3 | 1 | ineq1i 4216 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (𝐷 ∩ 𝐶) |
| 4 | 3 | eqeq1i 2742 | . . 3 ⊢ ((𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) ↔ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶)) |
| 5 | 2, 4 | anbi12i 628 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
| 6 | df-redund 38625 | . 2 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
| 7 | df-redund 38625 | . 2 ⊢ (𝐷 Redund 〈𝐵, 𝐶〉 ↔ (𝐷 ⊆ 𝐵 ∧ (𝐷 ∩ 𝐶) = (𝐵 ∩ 𝐶))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ 𝐷 Redund 〈𝐵, 𝐶〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3950 ⊆ wss 3951 Redund wredund 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-in 3958 df-ss 3968 df-redund 38625 |
| This theorem is referenced by: refrelsredund3 38635 |
| Copyright terms: Public domain | W3C validator |